Evaluating limits

Calculus Level 1

Evaluate lim n n tan ( 1 n ) \displaystyle \lim_{n\to\infty} n \tan \left( \dfrac1n\right) .


Hint: Let m = 1 n m = \dfrac1n .

4 2.5 1 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zach Abueg
Jan 28, 2017

lim n n tan ( 1 n ) = lim n tan ( 1 n ) 1 n = 0 0 \displaystyle \lim_{n \to \infty} n \tan \left( \dfrac1n\right) = \lim_{n \to \infty} \frac {\tan \left( \dfrac1n\right)}{\dfrac1n} = \dfrac00

Apply L'Hopital's Rule :

lim n tan ( 1 n ) 1 n = lim n 1 n 2 × sec 2 ( 1 n ) 1 n 2 = lim n sec 2 ( 1 n ) \displaystyle \lim_{n \to \infty} \frac {\tan \left( \dfrac1n\right)}{\dfrac1n} = \lim_{n \to \infty} \frac {-\dfrac{1}{n^2} \times \sec^2\left(\dfrac1n\right)}{-\dfrac{1}{n^2}} = \lim_{n \to \infty} \sec^2\left(\dfrac1n\right)

lim n sec 2 ( 0 ) = lim n ( 1 cos 0 ) ( 1 cos 0 ) = lim n 1 1 × 1 1 = lim n 1 = 1 \displaystyle \lim_{n \to \infty} \sec^2 (0) = \lim_{n \to \infty} \left( \dfrac {1}{\cos 0}\right)\left( \dfrac {1}{\cos 0}\right) = \lim_{n \to \infty} \dfrac 11 \times \dfrac 11 = \lim_{n \to \infty} 1 = 1

Md Zuhair
Jan 20, 2017

Here when we put m = 1 n m = \frac{1}{n}

We get lim m 0 1 m tan m \displaystyle \lim_{m\to 0} \frac{1}{m} \tan m

We get a 0 0 \frac{0}{0} form. Hence using L hospitals rule we get

lim m 0 s e c 2 m 1 \displaystyle \lim_{m\to 0} \frac{sec^2 m}{1}

Putting m = 0

We get 1. (Answer)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...