Evaluating nested radicals

Calculus Level 1

2 2 2 0 + 2 2 2 1 + 2 2 2 2 + 2 2 2 3 + \sqrt{ \frac{2}{2^{2^0}} + \sqrt{ \frac{2}{2^{2^1}} + \sqrt{ \frac{2}{2^{2^2}} + \sqrt{ \frac{2}{2^{2^3}} +\cdots }}}}

If the value of above expression is in the form A \sqrt{A} , find the value of A A .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Harsh Khatri
Feb 13, 2016

We multiply S \displaystyle S by 1 2 \displaystyle \frac{1}{\sqrt2} and try to push it inside the nested radicals:

S 2 = 1 2 × 2 2 2 0 + 2 2 2 1 + \displaystyle \frac{S}{\sqrt2} = \frac{1}{\sqrt2} \times \sqrt{\frac{2}{2^{2^{0}}} + \sqrt{\frac{2}{2^{2^{1}}} + \ldots}}

S 2 = 1 2 × ( 2 2 2 0 + 2 2 2 1 + ) \displaystyle \Rightarrow \frac{S}{\sqrt2} = \sqrt{\frac{1}{2} \times \bigg( \frac{2}{2^{2^{0}}} + \sqrt{\frac{2}{2^{2^{1}}} + \ldots} \bigg)}

S 2 = 2 2 2 1 + 1 2 × ( 2 2 2 1 + ) \displaystyle \Rightarrow \frac{S}{\sqrt2} = \sqrt{ \frac{2}{2^{2^{1}}} + \frac{1}{2} \times \bigg( \sqrt{\frac{2}{2^{2^{1}}} + \ldots} \bigg) }

S 2 = 2 2 2 1 + 2 2 2 2 + 1 2 2 × ( ) \displaystyle \Rightarrow \frac{S}{\sqrt2}= \sqrt{ \frac{2}{2^{2^{1}}} + \sqrt{ \frac{2}{2^{2^{2}}} + \frac{1}{2^{2}} \times (\ldots) } }

We realise that this sequence is the same as S 2 \displaystyle S^2 without it's first term, so:

S 2 = S 2 2 2 2 0 \displaystyle \Rightarrow \frac{S}{\sqrt2} = S^2 - \frac{2}{2^{2^{0}}}

2 S 2 S 2 = 0 \displaystyle \Rightarrow \sqrt{2} S^2 - S - \sqrt{2} = 0

Solving the quadratic, we get S = 2 , 1 2 S = \sqrt2, - \frac{1}{\sqrt{2}} .

But, since S \displaystyle S is positive, ( S = 1 2 ) \displaystyle \big(S = -\frac{1}{\sqrt2}\big) is discarded. Hence:

S = A = 2 \displaystyle \Rightarrow S = \sqrt{A} = \sqrt2

A = 2 \displaystyle \Rightarrow A = \boxed{2}

Chew-Seong Cheong
Feb 14, 2016

Let y y be the nested radical, then we have:

y = 2 2 2 0 + 2 2 2 1 + 2 2 2 2 + 2 2 2 3 + . . . = 2 2 + 2 2 2 + 2 2 4 + 2 2 8 + . . . = 1 2 2 + 2 + 2 + 2 + . . . Let x = 2 + 2 + 2 + 2 + . . . y = x 2 x = 2 + x x 2 = 2 + x x 2 x 2 = 0 ( x 2 ) ( x + 1 ) = 0 x = 2 x > 0 y = x 2 = 2 2 = 2 A = 2 \begin{aligned} y & = \sqrt{\frac{2}{2^{2^0}}+\sqrt{\frac{2}{2^{2^1}}+\sqrt{\frac{2}{2^{2^2}}+\sqrt{\frac{2}{2^{2^3}}+...}}}} \\ & = \sqrt{\frac{2}{2}+\sqrt{\frac{2}{2^2}+\sqrt{\frac{2}{2^4}+\sqrt{\frac{2}{2^8}+...}}}} \\ & = \frac{1}{\sqrt{2}}\color{#3D99F6}{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}} \quad \quad \small \text{Let } x = \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}} \\ \Rightarrow y & = \frac{\color{#3D99F6}x}{\sqrt{2}} \\ \Rightarrow x & = \sqrt{2+x} \\ x^2 & = 2 + x \\ x^2 - x - 2 & = 0 \\ (x-2)(x+1) & = 0 \\ \Rightarrow x & = 2 \quad \quad \small \color{#3D99F6}{x > 0} \\ \Rightarrow y & = \frac{x}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \\ & \\ \Rightarrow A & = \boxed{2} \end{aligned}

Thanks, you clear my doubt

Junior Stu - 3 years ago
Vishwa Brungi
Feb 13, 2016

We can solve this by approximation method also. If we see the first term 2/2^2^0=1 and the remaining all term cannot be greater than 1 . ao, it means the total value cannot be greater than 2. So, The answer is 2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...