End of the world

Calculus Level 5

a = 0 b = 0 c = 0 a + b + c + a b c 2 a ( 2 a + b + 2 b + c + 2 a + c ) \large \displaystyle \sum^{\infty}_{a=0} \displaystyle \sum^{\infty}_{b=0} \displaystyle \sum^{\infty}_{c=0}\dfrac{a+b+c+abc} {2^a(2^{a+b}+2^{b+c}+2^{a+c})}

If the value of above expression is the form of a b \dfrac ab , where a a and b b are coprime positive integers, find a + b a+b .


The answer is 35.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akshat Sharda
Feb 25, 2016

S = a = 0 b = 0 c = 0 a + b + c + a b c 2 a ( 2 a + b + 2 b + c + 2 a + c ) 3 S = a = 0 b = 0 c = 0 a + b + c + a b c ( 2 a + b + 2 b + c + 2 a + c ) × [ 1 2 a + 1 2 b + 1 2 c ] = a = 0 b = 0 c = 0 a + b + c + a b c 2 a 2 b 2 c = a = 0 a 2 a b = 0 1 2 b c = 0 1 2 c + a = 0 1 2 a b = 0 b 2 b c = 0 1 2 c + a = 0 1 2 a b = 0 1 2 b c = 0 c 2 c + a = 0 a 2 a b = 0 b 2 b c = 0 c 2 c = 2 3 + 2 3 + 2 3 + 2 3 = 32 S = 32 3 \begin{aligned} S & = \displaystyle \sum^{\infty}_{a=0} \displaystyle \sum^{\infty}_{b=0} \displaystyle \sum^{\infty}_{c=0}\dfrac{a+b+c+abc} {2^a(2^{a+b}+2^{b+c}+2^{a+c})} \\3S & = \displaystyle \sum^{\infty}_{a=0} \displaystyle \sum^{\infty}_{b=0} \displaystyle \sum^{\infty}_{c=0}\dfrac{a+b+c+abc} {(2^{a+b}+2^{b+c}+2^{a+c})}×\left[ \frac{1}{2^a}+\frac{1} {2^b}+\frac{1}{2^c} \right] \\ & = \displaystyle \sum^{\infty}_{a=0} \displaystyle \sum^{\infty}_{b=0} \displaystyle \sum^{\infty}_{c=0}\dfrac{a+b+c+abc} {2^a2^b2^c } \\ & = \displaystyle \sum^{\infty}_{a=0}\frac{a}{2^a} \displaystyle \sum^{\infty}_{b=0}\frac{1}{2^b} \displaystyle \sum^{\infty}_{c=0}\frac{1}{2^c}+ \displaystyle \sum^{\infty}_{a=0}\frac{1}{2^a} \displaystyle \sum^{\infty}_{b=0}\frac{b}{2^b} \displaystyle \sum^{\infty}_{c=0}\frac{1}{2^c}+ \displaystyle \sum^{\infty}_{a=0}\frac{1}{2^a} \displaystyle \sum^{\infty}_{b=0}\frac{1}{2^b} \displaystyle \sum^{\infty}_{c=0}\frac{c}{2^c}+ \displaystyle \sum^{\infty}_{a=0}\frac{a}{2^a} \displaystyle \sum^{\infty}_{b=0}\frac{b}{2^b} \displaystyle \sum^{\infty}_{c=0}\frac{c}{2^c} \\ &= 2^3+2^3+2^3+2^3 =32 \\ & \Rightarrow S=\frac{32}{3}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...