Even harmonic?

Calculus Level 5

n = 1 ( 1 ) n 1 H 2 n n = A π B C ( ln B ) 2 D \large \sum_{n=1}^\infty (-1)^{n-1} \dfrac{H_{2n}}n = \dfrac{A\pi^B}C - \dfrac{(\ln B)^2}D

If the equation above holds true for positive integers A , B , C A,B,C and D D with A , C A,C coprime, find A + B + C + D A+B+C+D .

Notation : H n H_n denotes the n th n^\text{th} harmonic number , H n = 1 + 1 2 + 1 3 + + 1 n H_n = 1 + \dfrac12 + \dfrac13 + \cdots + \dfrac1n .


The answer is 59.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Since, n 1 H n n x n = 1 2 ln 2 ( 1 x ) + L i 2 ( x ) \displaystyle \sum_{n\ge 1} \frac{H_n}{n}x^n=\frac{1}{2}\ln^2 (1-x)+Li_2(x)

Set x = i x=i & we have Re ( n 1 H n n i n ) = n 1 ( 1 ) n H 2 n 2 n \displaystyle \text{Re}(\sum_{n\ge 1} \frac{H_n}{n}i^n) = \sum_{n\ge 1} (-1)^{n}\frac{H_{2n}}{2n}

We are left with n 1 ( 1 ) n H 2 n 2 n = Re ( 1 2 ln 2 ( 1 i ) + L i 2 ( i ) ) \displaystyle \sum_{n\ge 1} (-1)^{n}\frac{H_{2n}}{2n} = \text{Re}(\frac{1}{2}\ln^2 (1-i) + Li_2(i) )

Putting the values successively we have , n 1 ( 1 ) n 1 H 2 n n = 5 π 2 48 ln 2 2 4 \displaystyle \sum_{n\ge 1} (-1)^{n-1}\frac{H_{2n}}{n} = \frac{5\pi^2}{48}-\frac{\ln^2 2}{4}

Since H n n \frac{H_n}{n} is a decreasing sequence converging to 0 0 , and since n = 1 N e i n θ c o s e c 1 2 θ \left| \sum_{n=1}^N e^{in\theta}\right| \; \le \; \mathrm{cosec}\tfrac12\theta for all N 1 N \ge 1 and all 0 < θ < 2 π 0 < \theta < 2\pi , we (using Dirichlet's Test) deduce that n = 1 H n n z n \sum_{n=1}^\infty \frac{H_n}{n}z^n converges for all z = 1 |z| =1 except z = 1 z=1 . Thus, using Abel's Theorem, n = 1 H n n i n = lim r 1 n = 1 H n n ( i r ) n = lim r 1 [ 1 2 ln ( 1 i r ) 2 + L i 2 ( i r ) ] = 1 2 ln ( 1 i ) 2 + L i 2 ( i ) \sum_{n=1}^\infty \frac{H_n}{n}i^n \; = \; \lim_{r \to 1-} \sum_{n=1}^\infty \frac{H_n}{n}(ir)^n \; = \; \lim_{r \to 1-}\big[\tfrac12\ln(1-ir)^2 + \mathrm{Li}_2(ir)\big] \; = \; \tfrac12\ln(1-i)^2 + \mathrm{Li}_2(i) and we are done.

Mark Hennings - 4 years, 10 months ago

Taking time out to show that the series n H n i n n \sum_n \frac{H_n i^n}{n} converges, and using Abel's Theorem, so that we can take the limit of the first equation as x i x \to i radially outwards.

Mark Hennings - 4 years, 10 months ago

Log in to reply

Yes btw can you please elaborate the convergence here ? I'm weak at that.

Aditya Narayan Sharma - 4 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...