Even Monkeys can solve it using Calculator

288 3 × 432 3 × 648 3 = ? \Large \color{#624F41}{\sqrt[3]{288} \times \sqrt[3]{432} \times \sqrt[3]{648}=\ ?}


Note : Don't be a monkey.
Join the Brilliant Classes and enjoy the excellence.
Some Irrational Number. 288 None of the given choices. 432 648

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Nihar Mahajan
May 14, 2015

288 3 × 432 3 × 648 3 = 2 5 3 2 3 × 2 4 3 3 3 × 2 3 3 4 3 = 2 12 3 9 3 = 2 4 3 3 = 432 \Large{\sqrt[3]{288} \times \sqrt[3]{432} \times \sqrt[3]{648} \\= \sqrt[3]{2^53^2} \times \sqrt[3]{2^43^3} \times \sqrt[3]{2^33^4} \\ =\sqrt[3]{2^{12}3^9} \\ =2^43^3 \\ =\large\boxed{432}}

Moderator note:

Wonderful factorization of numbers. Bonus question: Without using a calculator, evaluate the expression below.

( 288 3 + 432 3 + 648 3 ) × [ ( 288 3 432 3 ) 2 + ( 432 3 648 3 ) 2 + ( 648 3 288 3 ) 2 ] \left ( \sqrt[3]{288} + \sqrt[3]{432} + \sqrt[3]{648} \right ) \\ \times \\ \left [ \left( \sqrt[3]{288} - \sqrt[3]{432} \right)^2 + \left( \sqrt[3]{432} - \sqrt[3]{648} \right)^2+ \left( \sqrt[3]{648} - \sqrt[3]{288}\right)^2 \right ]

[Response to Challenge Master Note]

Let a = 288 3 , b = 432 3 a=\sqrt[3]{288}~,~b=\sqrt[3]{432} and c = 648 3 c=\sqrt[3]{648} . The given expression (call it E \mathcal{E} ) to be evaluated is,

E = ( a + b + c ) [ ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ] = 2 ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) = 2 ( a 3 + b 3 + c 3 3 a b c ) = 2 ( 288 + 432 + 648 3 × 432 ) = 144 \begin{aligned}\mathcal{E}&=(a+b+c)\left[(a-b)^2+(b-c)^2+(c-a)^2\right]\\&=2(a+b+c)(a^2+b^2+c^2-ab-bc-ca)\\&=2(a^3+b^3+c^3-3abc)\\&=2(288+432+648-3\times 432)=\boxed{144}\end{aligned}

Prasun Biswas - 6 years ago

Response to Nihar Mahajan: Check this one. The equation is in form of X.3X/2.9X/4 whole cube rooted. Now simple multiplication gives us 27.X^3/8 cube rooted. removing cube root. gives us 3X/2. which is the middle number 432

Kaleem Ullah - 6 years ago
Mehul Arora
May 14, 2015

We know that,

a 3 b 3 c 3 = a b c 3 \sqrt[3]{a}*\sqrt[3]{b}*\sqrt[3]{c}=\sqrt[3]{abc}

Now, Note that:-

288 = 2 12 12 288=2*12*12

432 = 6 6 12 432=6*6*12

648 = 2 2 6 27 648=2*2*6*27

Therefore,

288 432 648 3 = 2 2 2 12 12 12 6 6 6 3 3 3 3 \sqrt[3]{288*432*648}= \sqrt[3]{2*2*2*12*12*12*6*6*6*3*3*3}

2 3 3 3 6 3 12 3 3 = ( 432 3 3 = 432 \sqrt[3]{{2}^{3}*{3}^{3}*{6}^{3}*{12}^{3}}= (\sqrt[3]{{432}^{3}}= 432

Hence, The answer is 432 \boxed{432}

Moderator note:

Nice way to factorizing the terms "half way". Good work! Bonus question: Because it's only true that A × B = A B \sqrt A \times \sqrt B = \sqrt {AB} when A , B 0 A,B \geq 0 ; is it also true that A 3 × B 3 = A B 3 \sqrt[3]{ A} \times \sqrt[3]{ B} = \sqrt[3]{AB} only when A , B 0 A,B \geq 0 ?

Mrh Riyad
May 22, 2015

288 3 × 432 3 × 648 3 \Large\color{#D61F06}{\sqrt[3]{288}\times\sqrt[3]{432}\times\sqrt[3]{648}} = 288 × 432 × 648 3 \Large\color{#D61F06}{=\sqrt[3]{288\times432\times648}} = 144 × 2 × 432 × 216 × 3 3 \Large\color{#D61F06}{=\sqrt[3]{144\times2\times432\times216\times3}} = 144 × 3 × 432 × 216 × 2 3 \Large\color{#D61F06}{=\sqrt[3]{144\times3\times432\times216\times2}} = 432 × 432 × 432 3 \Large\color{#D61F06}{=\sqrt[3]{432\times432\times432}} = ( 3 432 ) 3 \Large\color{#D61F06}{=\sqrt[3](432)^3} = 432 \Large\color{#D61F06}{=\boxed{432}}

Moderator note:

I wasn't expecting this. Nicely done!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...