even or odd

Level pending

x = 1 1 100 7 100 1 1 4 7 4 x=\dfrac {11^{100}-7^{100}}{11^{4}-7^{4}} is x x an even number or odd ?

odd undefined even

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nxin Nasn
Feb 21, 2016

we know that :

a n b n = ( a b ) ( a n 1 + a n 2 b + a n 3 b 2 + . . . + a 2 b n 3 + a b n 2 + b n 1 ) a^{n}-b^{n}=\left( a-b\right) \left( a^{n-1}+a^{n-2}b+a^{n-3}b^{2}+.\ldots ..+a^{2}b^{n-3}+ab^{n-2}+b^{n-1}\right)

let y y equals the numerator y = ( 1 1 4 ) 25 ( 7 4 ) 25 = ( 1 1 4 7 4 ) [ ( 1 1 4 ) 24 + ( 1 1 4 ) 23 ( 7 4 ) + . . + ( 1 1 4 ) ( 7 4 ) 23 + ( 7 4 ) 24 ] y=\left( 11^{4}\right) ^{25}-\left( 7^{4}\right) ^{25}=\left( 11^{4}-7^{4}\right) \left[ \left( 11^{4}\right) ^{24}+\left( 11^{4}\right) ^{23}\left( 7^{4}\right) +\ldots ..+\left( 11^{4}\right) \left( 7^{4}\right) ^{23}+\left( 7^{4}\right) ^{24}\right]

so x = [ ( 1 1 4 ) 24 + ( 1 1 4 ) 23 ( 7 4 ) + . . + ( 1 1 4 ) ( 7 4 ) 23 + ( 7 4 ) 24 ] x=\left[ \left( 11^{4}\right) ^{24}+\left( 11^{4}\right) ^{23}\left( 7^{4}\right) +\ldots ..+\left( 11^{4}\right) \left( 7^{4}\right) ^{23}+\left( 7^{4}\right) ^{24}\right]

we know that x x is the sum of 25 25 odd number, so x x is an o d d odd n u m b e r number

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...