Not even Wolfram-Alpha is going to help!

Geometry Level 5

10 ( 1 k < s 1007 cos ( 2 π k 2015 ) cos ( 2 π s 2015 ) ) = ? \large 10 \Bigg ( \sum_{1\leq k < s\leq 1007} \cos\left( \frac{2\pi k}{2015} \right) \cos \left( \frac{2\pi s}{2015} \right) \Bigg) = \ ?


The answer is -2515.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arturo Presa
Jul 24, 2015

Let's consider w k = cos ( 2 π k 2 n + 1 ) + i sin ( 2 π k 2 n + 1 ) w_{k}= \cos (\frac{2\pi k}{2n+1}) +i \sin(\frac{2\pi k}{2n+1}) where k k is any natural number such that 1 k n 1\le k\le n . Then all the numbers w k w_{k} and w k \overline w_{k} form all 2 n + 1 2n+1 -th roots of 1 that are different from 1. Then ( x w 1 ) ( x w 1 ) ( x w 2 ) ( x w 2 ) . . . ( x w n ) ( x w n ) = (x-w_{1})(x-\overline w_{1}) (x-w_{2})(x-\overline w_{2})...(x-w_{n})(x-\overline w_{n})= = x 2 n + 1 1 x 1 = x 2 n + x 2 n 1 + . . . + x 2 + x + 1 ( ) =\frac{x^{2n+1}-1}{x-1}=x^{2n}+x^{2n-1}+...+x^{2}+x+1\:\:\:\:(*) Now, using that ( x w k ) ( x w k ) = x 2 2 cos ( 2 π k 2 n + 1 ) x + 1 (x-w_{k})(x-\overline w_{k})=x^2-2\cos(\frac{2\pi k}{2n+1})x+1 and the previous equality (*) we obtain k = 1 n ( x 2 2 cos ( 2 π k 2 n + 1 ) x + 1 ) ) = x 2 n + x 2 n 1 + . . . + x 2 + x + 1. \prod_{k=1}^{n}(x^2-2\cos(\frac{2\pi k}{2n+1})x+1))=x^{2n}+x^{2n-1}+...+x^{2}+x+1. Making the coefficients of x 2 x^{2} in both sides of the equation equal, we get that 4 1 k < s n cos ( 2 π k 2 n + 1 ) cos ( 2 π s 2 n + 1 ) + n = 1 4*\sum_{1\le k<s\le n}\cos(\frac{2\pi k }{2n+1})\cos(\frac{2\pi s }{2n+1})+n=1 . Therefore 1 k < s n cos ( 2 π k 2 n + 1 ) cos ( 2 π s 2 n + 1 ) = 1 n 4 \sum_{1\le k<s\le n}\cos(\frac{2\pi k }{2n+1})\cos(\frac{2\pi s }{2n+1})=\frac{1-n}{4} . Replacing n n by 1007 and denoting the resulting sum by a a , we obtain that a = 1 1007 4 = 251.5 a=\frac{1-1007}{4}=-251.5 and therefore 10 a = 2515 10a=-2515 .

Sir can I demand a solution not involving complex numbers

Aakash Khandelwal - 5 years, 10 months ago

Log in to reply

A solution without using complex numbers. First, I will prove the following two lemmas.

Lemma 1: If sin x \sin x is a number distinct from 0 0 then k = 1 n cos ( k x ) = sin ( n + 1 ) x + sin n x s i n x 2 sin x \: \sum_{k=1}^{n} \cos(k x)=\frac{ \sin(n+1)x+\sin nx -sin x}{2\sin x}

Proof: k = 1 n cos ( k x ) = 1 2 sin x k = 1 n 2 sin x cos ( k x ) \sum_{k=1}^{n} \cos(k x)=\frac{1}{2\sin x} \sum_{k=1}^{n} 2\sin x\cos(k x) = 1 2 sin x k = 1 n ( sin ( k + 1 ) x sin ( k 1 ) x ) =\frac{1}{2\sin x}\sum_{k=1}^{n}(\sin (k+1)x - \sin (k-1)x ) = 1 2 sin x [ ( sin ( n + 1 ) x + sin n x ) ( sin x + sin 0 ) =\frac{1}{2\sin x}[(\sin (n+1)x +\sin nx )-(\sin x +\sin 0 ) ] = sin ( n + 1 ) x + sin n x s i n x 2 sin x . =\frac{ \sin(n+1)x+\sin nx -sin x}{2\sin x. } Q. E.D.

Lemma 2 : If x = 2 π j 2 n + 1 x=\frac{2\pi j}{2n+1} where j j is any integer, n n is a natural number and sin x \sin x is different from 0 0 , then k = 1 n cos ( k x ) = 1 2 \sum_{k=1}^{n} \cos(k x)=-\frac{1}{2}

Proof: For such a value of x x it is always true that sin ( n + 1 ) x + sin n x = 0 \sin (n+1)x +\sin nx =0 . Indeed, sin ( n + 1 ) x + sin n x = 2 sin ( ( n + 1 ) x + n x 2 ) cos ( ( n + 1 ) x n x 2 ) = \sin (n+1)x +\sin nx =2 \sin (\frac{(n+1)x+nx}{2})\cos(\frac{(n+1)x-nx}{2})= = 2 sin π j cos ( ( n + 1 ) x n x 2 ) = 0. =2 \sin \pi j\cos(\frac{(n+1)x-nx}{2})=0.

So we can complete the proof of Lemma 2 using the Lemma 1.

Q. E. D

Now using Lemma 2 twice we have that

1 k < s n cos 2 π k 2 n + 1 cos 2 π s 2 n + 1 = 1 2 ( ( k = 1 n cos 2 π k 2 n + 1 ) 2 k = 1 n cos 2 2 π k 2 n + 1 ) \sum_{1\le k<s\le n} \cos \frac{2\pi k}{2n+1}\cos \frac{2\pi s}{2n+1}=\frac{1}{2}((\sum_{k=1}^{n} \cos\frac{2\pi k}{2n+1})^{2}-\sum_{k=1}^{n} \cos^{2}\frac{2\pi k}{2n+1}) = 1 2 ( 1 4 k = 1 n 1 + cos 4 π k 2 n + 1 2 ) = 1 2 ( 1 4 n 2 1 2 k = 1 n cos 4 π k 2 n + 1 ) =\frac{1}{2} (\frac{1}{4}-\sum_{k=1}^{n} \frac{1+\cos\frac{4\pi k}{2n+1}}{2})=\frac{1}{2} (\frac{1}{4}-\frac{n}{2}-\frac{1}{2}\sum_{k=1}^{n} \cos\frac{4\pi k}{2n+1}) = 1 2 ( 1 4 n 2 1 2 ( 1 2 ) ) = 1 n 4 . =\frac{1}{2} (\frac{1}{4}-\frac{n}{2}-\frac{1}{2}(-\frac{1}{2}))=\frac{1-n}{4}.

Therefore the answer of our question can be found by making n = 1007 n=1007 in the latter expression and multiplying the result by ten. So we get 10 ( 1 1007 4 ) = 2515. 10 (\frac{1-1007}{4})=-2515.

Arturo Presa - 5 years, 10 months ago

Hello Sir. Can I ask how did you infer that the coefficient of x 2 x^2 on L.H.S. is 1 k < s 1007 cos ( 2 π k 2015 ) cos ( 2 π s 2015 ) \displaystyle \sum_{1\leq k < s\leq 1007} \cos\left( \frac{2\pi k}{2015} \right) \cos \left( \frac{2\pi s}{2015} \right)

Samuel Jones - 5 years, 10 months ago

Log in to reply

Actually, it is 4 1 k < s n cos ( 2 π k 2 n + 1 ) cos ( 2 π s 2 n + 1 ) + n 4*\sum_{1\le k<s\le n}\cos(\frac{2\pi k }{2n+1})\cos(\frac{2\pi s }{2n+1})+n . You can understand it by finding the coefficient of x 2 x^2 of a polynomial of the same type with less number of factors. For example, what is the coefficient of x 2 x^2 for the polynomial ( x 2 2 p 1 x + 1 ) ( x 2 2 p 2 x + 1 ) ( x 2 2 p 3 x + 1 ) (x^2-2p_{1}x+1)(x^2-2p_{2}x+1)(x^2-2p_{3}x+1) ? The term containing x 2 x^2 is obtained when you do the following:

( x 2 x^2 from the first factor)X ( 1 in the second) X( 1 in the third) + (1 from the first )x( x 2 x^2 from the second)x(1 from the third)+(1 from the first )x(1 from the second)x( x 2 x^2 from the third) +( 2 p 1 x -2p_{1}x from the first) x( 2 p 2 x -2p_{2}x from the second)x(1 from the third)+( 2 p 1 x -2p_{1}x from the first) x(1 from the second)x( 2 p 3 x -2p_{3}x from the third)+(1 from the first) x( 2 p 2 x -2p_{2}x from the second)x( 2 p 3 x -2p_{3}x from the third) .

In this case you would obtain: ( 1 + 1 + 1 + 4 p 1 p 2 + 4 p 1 p 3 + 4 p 2 p 3 ) x 2 (1+1+1+4 p_{1}p_{2}+4 p_{1}p_{3}+4 p_{2}p_{3})x^2 = ( 3 + 4 p 1 p 2 + 4 p 1 p 3 + 4 p 2 p 3 ) x 2 . =(3+4 p_{1}p_{2}+4 p_{1}p_{3}+4 p_{2}p_{3})x^2. Then the coefficient of x 2 x^2 would be 3 + 4 p 1 p 2 + 4 p 1 p 3 + 4 p 2 p 3 . 3+4 p_{1}p_{2}+4 p_{1}p_{3}+4 p_{2}p_{3}.

Arturo Presa - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...