Ever heard of complex numbers

Geometry Level 3

cos ( π 9 ) cos ( 5 π 9 ) cos ( 7 π 9 ) = ? \large \cos \left ( \dfrac{\pi}{9} \right)\cos \left ( \dfrac{5\pi}{9} \right)\cos \left ( \dfrac{7\pi}{9} \right) = \, ?


The answer is 0.125.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Chew-Seong Cheong
Mar 12, 2016

For variety, we know that:

cos ( π 9 ) + cos ( 3 π 9 ) + cos ( 5 π 9 ) + cos ( 7 π 9 ) = 1 2 cos ( π 3 ) = 1 2 cos ( π 9 ) + 1 2 + cos ( 5 π 9 ) + cos ( 7 π 9 ) = 1 2 cos ( π 9 ) + cos ( 5 π 9 ) + cos ( 7 π 9 ) = 0 \begin{aligned} \cos \left(\frac{\pi}{9}\right) + \color{#3D99F6}{\cos \left(\frac{3\pi}{9}\right)} + \cos \left(\frac{5\pi}{9}\right) + \cos \left(\frac{7\pi}{9}\right) & = \frac{1}{2} \quad \quad \small \color{#3D99F6}{\cos \left(\frac{\pi}{3}\right) = \frac{1}{2}} \\ \cos \left(\frac{\pi}{9}\right) + \color{#3D99F6}{\frac{1}{2}} + \cos \left(\frac{5\pi}{9}\right) + \cos \left(\frac{7\pi}{9}\right) & = \frac{1}{2} \\ \cos \left(\frac{\pi}{9}\right) + \cos \left(\frac{5\pi}{9}\right) + \cos \left(\frac{7\pi}{9}\right) & = 0 \end{aligned}

Let a = cos ( π 9 ) a = \cos \left(\frac{\pi}{9}\right) , b = cos ( 5 π 9 ) b = \cos \left(\frac{5\pi}{9}\right) , and c = cos ( 7 π 9 ) c = \cos \left(\frac{7\pi}{9}\right) . Then a + b + c = 0 \color{#3D99F6}{a + b + c = 0} . From the identity a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 ) ( a b + b c + c a ) ( a + b + c ) + 3 a b c a^3+b^3+c^3 = (\color{#3D99F6}{a + b + c})(a^2+b^2+c^2) - (ab+bc+ca)(\color{#3D99F6}{a + b + c}) + 3abc , we have a 3 + b 3 + c 3 = 3 a b c a^3+b^3+c^3 = 3abc . Therefore,

cos ( π 9 ) cos ( 5 π 9 ) cos ( 7 π 9 ) = 1 3 ( cos 3 ( π 9 ) + cos 3 ( 5 π 9 ) + cos 3 ( 7 π 9 ) ) = 1 3 ( 1 4 [ 4 ( cos 3 ( π 9 ) + cos 3 ( 5 π 9 ) + cos 3 ( 7 π 9 ) ) 3 ( 0 ) ] ) = 1 3 ( 1 4 [ 4 ( cos 3 ( π 9 ) + cos 3 ( 5 π 9 ) + cos 3 ( 7 π 9 ) ) 3 ( cos ( π 9 ) + cos ( 5 π 9 ) + cos ( 7 π 9 ) ) ] ) = 1 12 [ cos ( π 3 ) + cos ( 5 π 3 ) + cos ( 7 π 3 ) ] Note that cos 3 θ = 4 cos 3 θ 3 cos θ = 1 12 [ 1 2 + 1 2 + 1 2 ] = 1 8 \cos \left(\frac{\pi}{9}\right) \cos \left(\frac{5\pi}{9}\right) \cos \left(\frac{7\pi}{9}\right) \\ = \frac{1}{3} \left(\cos^3 \left(\frac{\pi}{9}\right) + \cos^3 \left(\frac{5\pi}{9}\right) + \cos^3 \left(\frac{7\pi}{9}\right) \right) \\ = \frac{1}{3} \left(\frac{1}{4} \left[4\left(\cos^3 \left(\frac{\pi}{9}\right) + \cos^3 \left(\frac{5\pi}{9}\right) + \cos^3 \left(\frac{7\pi}{9}\right) \right) - 3(\color{#3D99F6}{0}) \right] \right) \\ = \frac{1}{3} \left(\frac{1}{4} \left[4\left(\cos^3 \left(\frac{\pi}{9}\right) + \cos^3 \left(\frac{5\pi}{9}\right) + \cos^3 \left(\frac{7\pi}{9}\right) \right) - 3\left(\color{#3D99F6}{\cos \left(\frac{\pi}{9}\right) + \cos \left(\frac{5\pi}{9}\right) + \cos \left(\frac{7\pi}{9}\right)}\right) \right] \right) \\ = \frac{1}{12} \left[\cos \left(\frac{\pi}{3}\right) + \cos \left(\frac{5\pi}{3}\right) + \cos \left(\frac{7\pi}{3}\right)\right] \quad \quad \small \color{#3D99F6}{\text{Note that }\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta} \\ = \frac{1}{12} \left[ \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] = \boxed{\frac{1}{8}}

Awesome observation!

Aditya Kumar - 5 years, 2 months ago
Aakash Khandelwal
Mar 12, 2016

cos 20 × cos 40 × cos 80 \cos\ 20 \times \cos40 \times \cos80 is the given expression . Now using c o s θ × cos ( 60 θ ) × cos ( 60 + θ ) = 0.25 × cos ( 3 × θ ) cos\theta \times \cos(60-\theta) \times \cos(60 +\theta) = 0.25 \times \cos(3\times \theta) .Putting θ \theta = 20 20 answer is 0.125 \boxed{0.125} . Note that all angles are in degrees

Otto Bretscher
Mar 12, 2016
Ahmad Saad
Mar 12, 2016

Hobart Pao
Apr 16, 2016

A standard way to solve this problem is by using product to sum formulas.

cos ( a ) cos ( b ) = 1 2 [ cos ( a + b ) + cos ( a b ) ] \cos(a) \cos(b) = \dfrac{1}{2} \left[\cos(a+b) + \cos(a-b) \right]

= 1 2 [ cos ( 2 π 3 ) + cos ( 4 π 9 ) ] cos ( 7 π 9 ) = \dfrac{1}{2} \left[ \cos\left(\dfrac{2\pi}{3}\right) + \cos \left(\dfrac{4\pi}{9}\right) \right] \cos \left(\dfrac{7\pi}{9} \right)

= 1 2 cos ( 4 π 9 ) cos ( 7 π 9 ) + 1 2 cos ( 2 π 3 ) cos ( 7 π 9 ) = \dfrac{1}{2}\cos\left( \dfrac{4\pi}{9}\right)\cos\left(\dfrac{7\pi}{9}\right) + \dfrac{1}{2}\cos\left(\dfrac{2\pi}{3}\right) \cos \left(\dfrac{7\pi}{9} \right)

= 1 4 [ cos ( 11 π 9 ) + cos ( π 3 ) ] 1 4 cos ( 7 π 9 ) = \dfrac{1}{4} \left[ \cos\left( \dfrac{11\pi}{9}\right) + \cos\left(\dfrac{\pi}{3}\right) \right] - \dfrac{1}{4} \cos \left(\dfrac{7\pi}{9} \right)

Since cosine is an even function, we know that cos ( 11 π 9 ) = cos ( 7 π 9 ) \cos \left( \dfrac{11\pi}{9}\right) = \cos \left( \dfrac{7\pi}{9}\right) . We also know that cos ( π 3 ) = 1 2 \cos \left( \dfrac{\pi}{3}\right) = \dfrac{1}{2} .

Simplifying, the answer is 1 8 \boxed{\dfrac{1}{8}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...