My first problem!

Calculus Level 5

π 4 65 π 4 d x ( 1 + 2 sin x ) ( 1 + 2 cos x ) = k π \large \int_\frac \pi 4^ {\frac {65\pi}4} \frac{dx}{(1+ 2^{ \sin x} )(1+ 2^{\cos x})} = k \pi

Find k k ?

8 4 0 16

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We note that the integrand of π 4 65 π 4 d x ( 1 + 2 sin x ) ( 1 + 2 cos x ) \displaystyle \int_\frac \pi 4^{\frac {65\pi}4} \frac {dx}{(1+2^{\sin x})(1+2^{\cos x})} is periodic with a period of 2 π 2\pi . The integral has a domain 65 π 4 π 4 = 16 π \dfrac {65\pi}4 - \dfrac \pi 4 = 16\pi or 8 cycles. Therefore,

I = π 4 65 π 4 d x ( 1 + 2 sin x ) ( 1 + 2 cos x ) = 8 0 2 π d x ( 1 + 2 sin x ) ( 1 + 2 cos x ) Using the identity: a b f ( x ) d x = a b f ( a + b x ) d x = 8 2 0 2 π ( 1 ( 1 + 2 sin x ) ( 1 + 2 cos x ) + 1 ( 1 + 2 sin ( 2 π x ) ( 1 + 2 cos ( 2 π x ) ) ) d x = 4 0 2 π ( 1 ( 1 + 2 sin x ) ( 1 + 2 cos x ) + 1 ( 1 + 2 sin x ) ( 1 + 2 cos x ) ) d x = 4 0 2 π ( 1 ( 1 + 2 sin x ) ( 1 + 2 cos x ) + 2 sin x ( 1 + 2 sin x ) ( 1 + 2 cos x ) ) d x = 4 0 2 π 1 1 + 2 cos x d x Integral is symmetrical about π . = 8 0 π 1 1 + 2 cos x d x Using the identity: a b f ( x ) d x = a b f ( a + b x ) d x = 4 0 π ( 1 1 + 2 cos x + 1 1 + 2 cos ( π x ) ) d x = 4 0 π ( 1 1 + 2 cos x + 1 1 + 2 cos x ) d x = 4 0 π ( 1 1 + 2 cos x + 2 cos x 1 + 2 cos x ) d x = 4 0 π 1 d x = 4 π \begin{aligned} I & = \int_\frac \pi 4^{\frac {65\pi}4} \frac {dx}{(1+2^{\sin x})(1+2^{\cos x})} \\ & = 8 \int_0^{2\pi} \frac {dx}{(1+2^{\sin x})(1+2^{\cos x})} & \small \color{#3D99F6} \text{Using the identity: }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \frac 82 \int_0^{2\pi} \left( \frac 1{(1+2^{\sin x})(1+2^{\cos x})} + \frac 1{(1+2^{\sin (2\pi- x})(1+2^{\cos (2\pi-x)})} \right) dx \\ & = 4 \int_0^{2\pi} \left( \frac 1{(1+2^{\sin x})(1+2^{\cos x})} + \frac 1{(1+2^{-\sin x})(1+2^{\cos x})} \right) dx \\ & = 4 \int_0^{2\pi} \left( \frac 1{(1+2^{\sin x})(1+2^{\cos x})} + \frac {2^{\sin x}}{(1+2^{\sin x})(1+2^{\cos x})} \right) dx \\ & = 4 \int_0^{2\pi} \frac 1{1+2^{\cos x}} dx & \small \color{#3D99F6} \text{Integral is symmetrical about }\pi. \\ & = 8 \int_0^\pi \frac 1{1+2^{\cos x}} dx & \small \color{#3D99F6} \text{Using the identity: }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = 4 \int_0^\pi \left( \frac 1{1+2^{\cos x}} + \frac 1{1+2^{\cos (\pi-x)}} \right) dx \\ & = 4 \int_0^\pi \left( \frac 1{1+2^{\cos x}} + \frac 1{1+2^{-\cos x}} \right) dx \\ & = 4 \int_0^\pi \left( \frac 1{1+2^{\cos x}} + \frac {2^{\cos x}}{1+2^{\cos x}} \right) dx \\ & = 4 \int_0^\pi 1 \ dx \\ & = 4 \pi \end{aligned}

k = 4 \implies k = \boxed{4}

Exactly, and once again a clean solution :)

Aman Joshi - 3 years, 7 months ago

improve more

improve more - 2 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...