Every Algebra Question Ever

Algebra Level pending

Solve for x x (a real root):

5 x 2 + 6 x + 5 = 64 x 3 + 4 x 5 x 2 + 6 x + 6 \sqrt{5x^{2}+6x+5} = \frac{64x^{3}+4x}{5x^{2}+6x+6}

Source: A Vietnamese Book


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

{ { x 1 } , { x 1 361 1 3 ( 361 964637 + 36 i 136255611 3 + 3734545 964637 + 36 i 136255611 3 32981 ) 1 2 4 964637 + 36 i 136255611 3 1083 263848 390963 41380 1083 964637 + 36 i 136255611 3 + 4000800 130321 1 3 ( 361 964637 + 36 i 136255611 3 + 3734545 964637 + 36 i 136255611 3 32981 ) 39 361 } , { x 39 361 1 361 1 3 ( 361 964637 + 36 i 136255611 3 + 3734545 964637 + 36 i 136255611 3 32981 ) + 1 2 ( 4 964637 + 36 i 136255611 3 1083 263848 390963 41380 1083 964637 + 36 i 136255611 3 + 4000800 130321 1 3 ( 361 964637 + 36 i 136255611 3 + 3734545 964637 + 36 i 136255611 3 32981 ) \left\{\{x\to 1\},\left\{x\to -\frac{1}{361} \sqrt{\frac{1}{3} \left(361 \sqrt[3]{-964637+36 i \sqrt{136255611}}+\frac{3734545}{\sqrt[3]{-964637+36 i \sqrt{136255611}}}-32981\right)}-\frac{1}{2} \sqrt{-\frac{4 \sqrt[3]{-964637+36 i \sqrt{136255611}}}{1083}-\frac{263848}{390963}-\frac{41380}{1083 \sqrt[3]{-964637+36 i \sqrt{136255611}}}+\frac{4000800}{130321 \sqrt{\frac{1}{3} \left(361 \sqrt[3]{-964637+36 i \sqrt{136255611}}+\frac{3734545}{\sqrt[3]{-964637+36 i \sqrt{136255611}}}-32981\right)}}}-\frac{39}{361}\right\},\left\{x\to -\frac{39}{361}-\frac{1}{361} \sqrt{\frac{1}{3} \left(361 \sqrt[3]{-964637+36 i \sqrt{136255611}}+\frac{3734545}{\sqrt[3]{-964637+36 i \sqrt{136255611}}}-32981\right)}+\frac{1}{2}\surd \left(-\frac{4 \sqrt[3]{-964637+36 i \sqrt{136255611}}}{1083}-\frac{263848}{390963}-\frac{41380}{1083 \sqrt[3]{-964637+36 i \sqrt{136255611}}}+\frac{4000800}{130321 \sqrt{\frac{1}{3} \left(361 \sqrt[3]{-964637+36 i \sqrt{136255611}}+\frac{3734545}{\sqrt[3]{-964637+36 i \sqrt{136255611}}}-32981\right)}}\right.\right.\right.

Guessing that you meant the real root: 1 is the answer ( 4 = 68 17 4=\frac{68}{17} ).

That is one amusing solution xD

Zhang Xiaokang - 1 year, 11 months ago

The other two roots are the complex roots. Yes, they are complex (pun intended).

A Former Brilliant Member - 1 year, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...