Every third

Algebra Level 5

( 2000 2 ) + ( 2000 5 ) + ( 2000 8 ) + . . . + ( 2000 2000 ) \large {2000 \choose 2} + {2000 \choose 5} + {2000 \choose 8} + ... \large + {2000 \choose 2000}

If the value of the expression above can be expressed as

A B + C D \large \frac{A^B+C}{D}

for integers A , B , C A,B,C and D D , find the value of A + B + C + D A+B+C+D .


The answer is 2004.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let z z be complex number such that z 3 = 1 z^3=1 .

And

S = ( 2000 2 ) + ( 2000 5 ) + ( 2000 8 ) + . . + ( 2000 2000 ) S={2000 \choose 2} + {2000 \choose 5} + {2000 \choose 8} +..+ {2000 \choose 2000}

Now take a look at number ( 1 + z ) 2000 1+z)^{2000}

Using the binomial formula and using the definition of z z in binomial expand you will have terms with z z or z 2 z^2 or z 3 = 1 z^3=1 . So you can rewrite our number as:

( 1 + z ) 2000 = ( 2000 0 ) + ( 2000 3 ) + . . . + ( 2000 1998 ) + z ( ( 2000 1 ) + ( 2000 4 ) + . . . + ( 2000 1999 ) ) + z 2 ( ( 2000 2 ) + ( 2000 5 ) + ( 2000 8 ) + . . + ( 2000 2000 ) ) (1+z)^{2000}={2000 \choose 0} +{2000 \choose 3} +...+{2000 \choose 1998} + z({2000 \choose 1} +{2000 \choose 4} +...+{2000 \choose 1999} )+z^2({2000 \choose 2} + {2000 \choose 5} + {2000 \choose 8} +..+ {2000 \choose 2000})

Using that ( n k ) = ( n n k ) {n\choose k}={n\choose n-k} .

( 2000 0 ) + ( 2000 3 ) + . . . + ( 2000 1998 ) = ( 2000 2 ) + ( 2000 5 ) + ( 2000 8 ) + . . + ( 2000 2000 ) = S {2000 \choose 0} +{2000 \choose 3} +...+{2000 \choose 1998}={2000 \choose 2} + {2000 \choose 5} + {2000 \choose 8} +..+ {2000 \choose 2000}=S

And because of that the last term can be written as:

( 2000 1 ) + ( 2000 4 ) + . . . + ( 2000 1999 ) = 2 2000 2 S {2000 \choose 1} +{2000 \choose 4} +...+{2000 \choose 1999} =2^{2000}-2S

Now we have:

( 1 + z ) 2000 = S + z ( 2 n 2 S ) + z 2 S (1+z)^{2000}=S+z(2^n-2S)+z^2 S

Now you can calculate it simple using the fact that if z 3 = 1 z^3=1 than 1 + z + z 2 = 0 1+z+z^2=0

So now

( 1 + z ) 2000 = z (1+z)^{2000}=z

And

z = S + z ( 2 n 2 S ) S z S z=S+z(2^n-2S)-S-zS

z = z 2 n z 3 S z=z 2^n-z3S

And finally

S = 2 2000 1 3 S=\frac{2^{2000}-1}{3}

You have written "...for positive integers A , B , C , D A,B,C,D " which seems very wrong. Please fix it!

Kartik Sharma - 5 years, 9 months ago

Log in to reply

Actually i didn't write it, someone of moderators did that..

Вук Радовић - 5 years, 9 months ago

how does (1+z)^2000 = z ?

Dallin Richards - 4 years, 3 months ago
Shashank Goel
Oct 19, 2015

Better write the expansion of x(1+x)^2000 .replace x=1,omega,omega^2 in the expanded equation .add the three equations and u get the answer.

Did the same!!

Prakhar Bindal - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...