Nice use of AM GM

Calculus Level 5

We are given 4 lines with equations:

  • y = ( 2 + 3 a 2 + 3 b 2 ( 1 + a 2 ) 2 + b ( 6 a + 6 a 3 ) a + b ( 1 + a 2 ) ) min 2 y = \Bigg( \dfrac{2 + 3a^2 + 3b^2(1 + a^2)^2 + b(6a + 6a^3)}{a + b(1 + a^2)} \Bigg)^2_{\min}
  • y = ( c 2 d 2 2 c 2 d + 2 c 2 + 2 c d 2 c + 1 c 2 d + c ) min + 3 8 y = \Bigg(\dfrac{c^2d^2 - 2c^2d + 2c^2 + 2cd - 2c + 1}{c^2d + c} \Bigg)_{\min} + 3 - \sqrt{8}
  • y = [ e ] x 2 y = [e]x^2
  • y = 1 2 [ e ] x 2 y =\dfrac{1}{2} [e]x^2

With a , b , c , d > 0 , e 1 a,b,c,d > 0, e\geq 1 .

The area bounded by the given lines and the curves when obtain a maximum value of M M , with M = a 1 a 2 ( a 3 1 ) ( a 4 a 5 1 ) M = \dfrac{a_{1}}{a_{2}}(\sqrt{a_{3}} - 1)(a_{4}\sqrt{a_{5}} - 1) .

Find a 1 + a 2 + a 3 + a 4 + a 5 a_{1} + a_{2} + a_{3} + a_{4} + a_{5} .

Details and Assumptions :

  • [ . ] [.] denote the greatest integer function.
  • ( f ( x ) ) min (f(x))_{\text{min}} denote the minimum value of f ( x ) f(x) .
Dedicated to Aditya Raut and Guilherme Dela Corte .


The answer is 63.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

U Z
Dec 31, 2014

Line 1

2 + 3 y 2 + 3 x 2 y 2 ( 1 y + y ) 2 + 6 x y 2 ( y + 1 y ) y [ 1 + x ( 1 y + y ) ] \dfrac{2 + 3y^{2} + 3x^{2}y^{2}(\frac{1}{y} + y)^{2} + 6xy^{2}(y + \frac{1}{y})}{y[1 + x(\frac{1}{y} + y)]}

= 3 y 2 ( x 2 ( y + 1 y ) 2 + 2 x ( 1 y + y ) + 1 ) y [ 1 + x ( 1 y + y ) ] + 2 y [ 1 + x ( 1 y + y ) ] = \dfrac{3y^{2}( x^{2}(y + \frac{1}{y})^{2} + 2x(\dfrac{1}{y} + y) + 1)}{y[1 + x(\dfrac{1}{y} + y)]} + \dfrac{2}{y[1 + x(\dfrac{1}{y} + y)]}

= 3 y ( x ( 1 y + y ) + 1 ) + 2 y [ 1 + x ( 1 y + y ) ] = 3y( x(\dfrac{1}{y} + y) + 1) + \dfrac{2}{y[1 + x(\dfrac{1}{y} + y)]}

A . M G . M A.M \geq G.M

= ( 2 × 6 ) 2 = 24 = (2 \times \sqrt{6})^2 = 24 , y = 24 y = 24


Line 2 x 2 y 2 + 2 x y + 1 2 x 2 y + 2 x 2 2 x x ( x y + 1 ) \dfrac{ x^{2}y^{2} + 2xy + 1 - 2x^{2}y + 2x^{2} - 2x}{x(xy + 1)}

= ( x y + 1 ) 2 2 x ( x y + 1 x ) x ( x y + 1 ) = \dfrac{ (xy + 1)^{2} - 2x(xy + 1 - x)}{x(xy + 1)}

= x y + 1 x + 2 x x y + 1 2 = \dfrac{xy + 1}{x} + \dfrac{2x}{xy + 1} - 2

A . M G . M A.M \geq G.M

x y + 1 x + 2 x x y + 1 2 2 \dfrac{\dfrac{xy + 1}{x} + \dfrac{2x}{xy + 1}}{2} \geq \sqrt{2}

m i n i m u m v a l u e = 2 2 2 + 3 2 2 minimum ~value = 2\sqrt{2} - 2 + 3 - 2\sqrt{2} , y = 1 y = 1


A r e a = 2 y = 1 y = 24 ( 2 y [ a ] y [ a ] ) d y Area~ = \displaystyle 2\int_{y=1}^{y=24} (\sqrt{\dfrac{2y}{[a]}} - \sqrt{\dfrac{y}{[a]}})dy

Area will be maximum when [ e ] = 1 [e] = 1

A r e a = 2 ( 2 1 ) 1 24 y d y Area~ = \displaystyle 2(\sqrt{2} - 1) \int_{1}^{24} \sqrt{y}dy

= 4 ( 2 1 ) 3 . ( 2 4 3 / 2 1 ) = \dfrac{4(\sqrt{2} - 1)}{3}.(24^{3/2} - 1)

A r e a = 4 ( 2 1 ) 3 ( 48 6 1 ) \boxed{Area ~ = \dfrac{4(\sqrt{2} - 1)}{3}(48\sqrt{6} - 1)}

The question was Awesome! (Thumbs up)

Aman Gautam - 6 years, 5 months ago

Line 2 - This problem was earlier posted by @Guilhereme Dela Corte

Line 1 - This question appeared in JOMO 10 created by @Aditya Raut

U Z - 6 years, 5 months ago

Loved this problem !! : ) :)

Keshav Tiwari - 5 years, 8 months ago

Ok, manca qualche precisazione su a1 a2 etc

Claudia Manotti - 4 years, 9 months ago

Excellent question. However, the solution would have been clearer had you used a , b , c , d a,b,c,d to determine Lines 1 and 2, in stead of using x , y x,y and causing confusion.

Janardhanan Sivaramakrishnan - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...