Fun with triangles and polynomials

Geometry Level 5

It is given that a , b , c a, b, c are sides of a triangle Δ A B C \Delta ABC and the roots of the equation below.

x 3 24 x 2 + 180 x 420 = 0. x^3-24x^2+180x-420=0.

If the value of sin A + sin B + sin C = p q \sin A+\sin B+\sin C=\dfrac{p}{q} , where p , q p, q are coprime positive integers , find p + q 10 p+q-10 .


Inspiration


The answer is 73.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Jul 18, 2016

Relevant wiki: Vieta's Formula Problem Solving - Intermediate

Calling the expression I ( = cyc sin A ) \small{\mathcal I\left(=\displaystyle\sum_{\text{cyc}}\sin A\right)} and using sine rule, sin A = a 2 R \small{\color{teal}{\sin A=\dfrac{a}{2R}}} .

I = cyc a 2 R = cyc a 2 R = cyc a a b c 2 Δ \mathcal I=\displaystyle\sum_{\text{cyc}}\dfrac{a}{\color{#D61F06}{2R}}=\dfrac{\displaystyle\sum_{\text{cyc}} a}{\color{#D61F06}{2R}}=\dfrac{\displaystyle\sum_{\text{cyc}}a}{\color{#D61F06}{\dfrac{abc}{2\Delta}}}

Now using Vieta's formula, cyc a = 24 , a b c = 420 \small{\color{teal}{\displaystyle\sum_{\text{cyc}}a=24,abc=420}} so that:

I = 4 Δ 35 \mathcal I=\dfrac{4\Delta}{35}

Semi perimeter = s = cyc a 2 = 12 =s=\dfrac{\displaystyle\sum_{\text{cyc}}a}{2}=12 . Now using Heron's formula for finding area:-

Δ = 12 { ( 12 a ) ( 12 b ) ( 12 c ) } f ( 12 ) \Delta=\sqrt{12\{\underbrace{(12-a)(12-b)(12-c)\}}_{\color{#20A900}{f(12)}}}

( f ( x ) = x 3 24 x 2 + 120 x 420 = ( x a ) ( x b ) ( x c ) ) (\because \small{f(x)=x^3-24x^2+120x-420=(x-a)(x-b)(x-c)})

= 12 f ( 12 ) = 12 12 = 12 =\sqrt{12f(12)}=\sqrt{12\cdot 12}=12

Hence, I = 48 35 \mathcal I=\dfrac{48}{35} .

48 + 35 10 = 73 \large 48+35-10=\boxed{73}

No wonder I had difficulties solving...I didn't know Heron's Formula

Btw, this title seems awfully familiar...

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Yep... It resembles the title you used for posting your Vieta problem... :-p

Rishabh Jain - 4 years, 11 months ago

Really a nice solution. I really like your idea of relating the factored form to the standard form of the cubic equation and substituting 12 for x to arrive for the area. Using this, I have posted a solution with some variations. Thanks.

Niranjan Khanderia - 4 years, 11 months ago
Chew-Seong Cheong
Jul 18, 2016

By sine rule, we have: sin A a = sin B b = sin C c = k \dfrac {\sin A}a = \dfrac {\sin B}b = \dfrac {\sin C}c = k { sin A = k a sin B = k b sin C = k c \implies \begin{cases} \sin A = ka \\ \sin B = kb \\ \sin C = kc \end{cases}

sin A + sin B + sin C = k ( a + b + c ) Vieta’s formula: a + b + c = 24 = 24 k p q = 24 k \begin{aligned} \implies \sin A + \sin B + \sin C & = k(\color{#3D99F6}{a+b+c}) & \small \color{#3D99F6}{\text{Vieta's formula: }a+b+c = 24} \\ & = \color{#3D99F6}{24}k \\ \implies \frac pq & = 24k \end{aligned}

Area of triangle A = 1 2 a b sin C = 1 2 a b c k A_\triangle = \frac 12 ab \sin C = \frac 12 abck . By Vieta's formula , we have a b c = 420 abc = 420 A = 210 k \implies A_\triangle = 210k .

By Heron's formula ,

A = s ( s a ) ( s b ) ( s c ) where s = 1 2 ( a + b + c ) and Vieta’s formula: a + b + c = 24 = 12 ( 12 a ) ( 12 b ) ( 12 c ) Note that: x 3 24 x 2 + 180 x 420 = ( x a ) ( x b ) ( x c ) = 12 ( 12 ) = 12 \begin{aligned} A_\triangle & = \sqrt{\color{#3D99F6}{s}(\color{#3D99F6}{s}-a)(\color{#3D99F6}{s}-b)(\color{#3D99F6}{s}-c)} & \small \color{#3D99F6}{\text{where }s = \frac 12 (a+b+c)\text{ and Vieta's formula: }a+b+c = 24} \\ & = \sqrt{12\color{#3D99F6}{(12-a)(12-b)(12-c)}} & \small \color{#3D99F6}{\text{Note that: }x^3-24x^2+180x-420 = (x-a)(x-b)(x-c)} \\ & = \sqrt{12\color{#3D99F6}{(12)}} \\ & = 12 \end{aligned}

210 k = 12 k = 2 35 p q = 48 35 p + q 10 = 73 \implies 210k = 12 \implies k = \dfrac 2{35} \implies \dfrac pq = \dfrac {48}{35} \implies p+q-10 = \boxed{73}

Nice solution.

Harsh Shrivastava - 4 years, 11 months ago

Log in to reply

Thanks. I have changed it.

Chew-Seong Cheong - 4 years, 11 months ago

I did a similar solution but yours is much cleaner than mine. I related everything to Sin B instead of k (using the Sine Law) and I also expanded Heron's formula and used Vieta's formula directly. I really like your idea of relating the factored form to the standard form of the cubic eqn. and substituting 12 into x. Beautiful solution.

Richard Costen - 4 years, 11 months ago

A Beautiful Solution. I really like your idea of relating the factored form to the standard form of the cubic equation and substituting 12 for x to arrive for the area. Using this, I have posted a solution with some variations. Thanks.

Niranjan Khanderia - 4 years, 11 months ago

Log in to reply

Thanks for your comments.

Chew-Seong Cheong - 4 years, 11 months ago

x 3 24 x 2 + 180 x 420 = 0. b y V i e t a s f o r m u l a , c y c a = 24 , c y c a b = 180 , a b c = 420. A f t e r n o r m a l m a n u p u l a t i o n s , w e g e t c y c a 2 = 216 , a n d c y c a 2 b 2 = 18 0 2 2 420 24 = 12240. U s i n g C o s L a w , S i n A = 1 C o s 2 A = 1 2 b c 4 b 2 c 2 ( a 2 + b 2 + c 2 ) 2 . S i n A = a 2 a b c 4 c y c a 2 b 2 { c y c a 2 } 2 . c y c S i n A = c y c a 2 a b c 4 c y c a 2 b 2 { c y c a 2 } 2 . c y c S i n A = 24 2 420 4 12240 21 6 2 = 24 48 2 420 = 48 35 = p q . p + q 10 = 73. . x^3-24x^2+180x-420=0.\ \ \ \ by\ Vieta's\ formula,\\ \displaystyle \sum_{cyc}a=24,\ \ \ \ \ \sum_{cyc}ab=180,\ \ \ \ \ abc=420. \ \ \ After\ normal\ manupulations,\\ \displaystyle we\ get\ \sum_{cyc}a^2=216,\ \ \ \ \ and\ \ \ \ \ \sum_{cyc}a^2b^2=180^2-2*420*24=12240.\\ Using\ Cos\ Law,\ SinA=\sqrt{1-Cos^2A}=\dfrac 1 {2bc}*\sqrt{4b^2c^2- ( - a^2+b^2+c^2)^2}.\\ \displaystyle SinA=\dfrac a {2abc} * \sqrt{4 \sum_{cyc}a^2b^2\ \ -\ \ \ \left \{ \sum_{cyc}a^2 \right \}^2.} \\ \displaystyle \sum_{cyc}SinA= \dfrac{\displaystyle \sum_{cyc}a} {2abc}* \sqrt{ 4\sum_{cyc}a^2b^2\ \ -\ \ \ \left \{ \sum_{cyc}a^2 \right \}^2.}\\ \displaystyle \sum_{cyc}SinA= \dfrac {24}{2*420}*\sqrt{4* 12240\ -\ 216^2}\\ =\dfrac{24*48}{2*420}=\dfrac{48}{35}=\dfrac p q.\\ p+q-10= \huge \color{#D61F06}{73}. \\. \\

This is how I arrived at the solution. But a straight solution below.

Thanks to @Chew-Seong Cheong and @Rishabh Cool for the method below.

U s i n g V i e t a s F o r m u l a c y c a = 24 , c y c a b = 180 , a b c = 420. S e m i p e r i m e t e r = s = 1 2 c y c a = 12 Now using Heron’s formula for finding area:- f ( x ) = x 3 24 x 2 + 120 x 420 = ( x a ) ( x b ) ( x c ) [ A B C ] = s f ( s ) = 12 { ( 12 a ) ( 12 b ) ( 12 c ) } f ( 12 ) [ A B C ] = 12 f ( 12 ) = 12 12 = 12 S i n A = 2 [ A B C ] b c = 2 a [ A B C ] a b c . c y c S i n A = c y c 2 a [ A B C ] a b c 2 24 12 420 = 48 35 = p q . p + q 10 = 73. \displaystyle Using Vieta'sFormula\ \ \sum_{cyc}a=24,\ \ \ \ \ \sum_{cyc}ab=180,\ \ \ \ \ abc=420. \\ \displaystyle Semi \ perimeter \ \ =s=\frac 1 2 *\sum_{cyc}a=12\\ \text{ Now using Heron's formula for finding area:-}\\ \because\ \ f(x)=x^3-24x^2+120x-420=(x-a)(x-b)(x-c)\\ \therefore\ \ [ABC]=\sqrt{s*f(s)}= \sqrt{12\{\underbrace{(12-a)(12-b)(12-c)\}}_{\color{#3D99F6}{f(12)}}}\\ \therefore\ \ [ABC]=\sqrt{12f(12)}=\sqrt{12\cdot 12}=12\\ SinA=\dfrac {2[ABC]}{bc} =\dfrac{2a[ABC]}{abc}.\\ \displaystyle\ \sum_{cyc}SinA=\sum_{cyc}\dfrac{2a[ABC]}{abc}\\ \dfrac{2*24*12}{420}=\dfrac{48}{35}=\dfrac p q.\\ p+q-10= \huge \color{#D61F06}{73}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...