x 3 − 7 x 2 + 5 x + 2 = 0
Given that a , b and c are the roots of the above equation, find the value of cyc ∑ b c + 1 6 a 2 .
Want something more challenging? I have the perfect problem for you!
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Beautiful solution, as always. Well done!
Log in to reply
Thanks ... The only place where I required pen and paper was in calculating cyc ∑ a − 2 1 ... :-)
Very well explained.!
Relevant wiki: Vieta's Formula Problem Solving - Intermediate
S = cyc ∑ b c + 1 6 a 2 = 6 cyc ∑ a a b c + 1 a 2 Vieta’s formulas: a b c = − 2 = 6 cyc ∑ a − 2 + 1 a 2 = 6 cyc ∑ a − 2 a 3 Since a 3 − 7 a 2 + 5 a + 2 = 0 = 6 cyc ∑ a − 2 7 a 2 − 5 a − 2 = 6 cyc ∑ a − 2 7 ( a 2 − 4 a + 4 ) + 2 3 ( a − 2 ) + 1 6 = 6 [ 7 ( a + b + c ) − 3 ( 1 4 ) + 3 ( 2 3 ) + 1 6 ( a − 2 1 + b − 2 1 + c − 2 1 ) ] Vieta’s: a + b + c = 7 = 6 [ 7 ( 7 ) − 4 2 + 6 9 + 1 6 ( − ( 2 − a ) ( 2 − b ) ( 2 − c ) a b + b c + c a − 4 ( a + b + c ) + 1 2 ) ] Vieta’s: a b + b c + c a = 5 = 6 [ 7 6 + 1 6 ( − ( − 8 ) 5 − 4 ( 7 ) + 1 2 ) ] ( 2 − a ) ( 2 − b ) ( 2 − c ) = 2 3 − 7 ( 2 2 ) + 5 ( 2 ) + 2 = − 8 = 3 2 4
Relevant wiki: Vieta's Formula Problem Solving - Intermediate
A solution that uses Newton's sums:
From Vieta's formula, we get
a + b + c = 7 a b + a c + b c = 5 a b c = − 2
cyc ∑ b c + 1 6 a 2 = cyc ∑ a b c + a 6 a 3 = cyc ∑ a − 2 6 a 3 = a − 2 6 a 3 + b − 2 6 b 3 + c − 2 6 c 3 = ( a − 2 ) ( b − 2 ) ( c − 2 ) 6 a 3 ( b − 2 ) ( c − 2 ) + 6 b 3 ( a − 2 ) ( c − 2 ) + 6 c 3 ( a − 2 ) ( b − 2 ) = a b c − 2 ( a b + a c + b c ) + 4 ( a + b + c ) − 8 6 a 3 ( b c − 2 ( b + c ) + 4 ) + 6 b 3 ( a c − 2 ( a + c ) + 4 ) + 6 c 3 ( a b − 2 ( a + b ) + 4 ) = − 2 − 2 ( 5 ) + 4 ( 7 ) − 8 6 a 3 ( a − 2 − 2 ( 7 − a ) + 4 ) + 6 b 3 ( b − 2 − 2 ( 7 − b ) + 4 ) + 6 c 3 ( c − 2 − 2 ( 7 − c ) + 4 ) = − 2 − 1 0 + 2 8 − 8 6 a 3 ( a − 2 − 1 0 + 2 a ) + 6 b 3 ( b − 2 − 1 0 + 2 b ) + 6 c 3 ( c − 2 − 1 0 + 2 c ) = 8 − 1 2 a 2 − 6 0 a 3 + 1 2 a 4 − 1 2 b 2 − 6 0 b 3 + 1 2 b 4 − 1 2 c 2 − 6 0 c 3 + 1 2 c 4 = 8 1 2 ( a 4 + b 4 + c 4 ) − 6 0 ( a 3 + b 3 + c 3 ) − 1 2 ( a 2 + b 2 + c 2 )
Now, we apply Newton's sums:
a + b + c = 7 a 2 + b 2 + c 2 = ( a + b + c ) 2 − 2 ( a b + a c + b c ) = ( 7 ) 2 − 2 ( 5 ) = 3 9 a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 ) − ( a b + a c + b c ) ( a + b + c ) + 3 ( a b c ) = ( 7 ) ( 3 9 ) − ( 5 ) ( 7 ) + 3 ( − 2 ) = 2 3 2 a 4 + b 4 + c 4 = ( a + b + c ) ( a 3 + b 3 + c 3 ) − ( a b + a c + b c ) ( a 2 + b 2 + c 2 ) + a b c ( a + b + c ) = ( 7 ) ( 2 3 2 ) − ( 5 ) ( 3 9 ) + ( − 2 ) ( 7 ) = 1 4 1 5
Substitute these values in:
8 1 2 ( a 4 + b 4 + c 4 ) − 6 0 ( a 3 + b 3 + c 3 ) − 1 2 ( a 2 + b 2 + c 2 ) = 8 1 2 ( 1 4 1 5 ) − 6 0 ( 2 3 2 ) − 1 2 ( 3 9 ) = 8 1 6 9 8 0 − 1 3 9 2 0 − 4 6 8 = 8 2 5 9 2 = 3 2 4
Nice... (+1)
You might like this question too. Enjoy!
Instead of expanding the denominator, notice that (a-2)(b-2)(c-2) is just -f (2).
Looks like you got a solution faster than yours :P
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Vieta's Formula Problem Solving - Intermediate
Call the sum T . Using Vieta's formula: cyc ∑ a = 7 , cyc ∑ a b = 5 , a b c = − 2 T = 6 cyc ∑ − 2 a b c + a a 3 = 6 cyc ∑ a − 2 a 3 8 + ( a 3 − 8 )
= 6 cyc ∑ [ a − 2 8 + a 2 + 2 a + 4 ]
= 6 [ cyc ∑ a − 2 8 + cyc ∑ a 2 + 2 cyc ∑ a + cyc ∑ 4 ] Now to calculate cyc ∑ a − 2 1 put x = 2 in f ( x ) − f ′ ( x ) = cyc ∑ a − x 1 (See my soln here )to obtain cyc ∑ a − 2 1 = 8 − 1 1 while cyc ∑ a 2 = ( cyc ∑ a ) 2 − 2 cyc ∑ a b = 3 9 .
Now , T = 6 [ 8 × 8 − 1 1 + 3 9 + 1 4 + 1 2 ] = 3 2 4