Everyone is playing with Vieta's, so I decided to join in the fun!

Algebra Level 5

x 3 7 x 2 + 5 x + 2 = 0 x^3-7x^2+5x+2=0

Given that a a , b b and c c are the roots of the above equation, find the value of cyc 6 a 2 b c + 1 \displaystyle \sum_{\text{cyc}} \dfrac{6a^2}{bc+1} .


Inspiration .

Try these questions too

Want something more challenging? I have the perfect problem for you!

Give this problem a solution which is more elegant, faster or simpler than mine!


The answer is 324.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Jun 25, 2016

Relevant wiki: Vieta's Formula Problem Solving - Intermediate

Call the sum T \mathcal{T} . Using Vieta's formula: cyc a = 7 , cyc a b = 5 , a b c = 2 \displaystyle\sum_{\text{cyc}}a=7,\displaystyle\sum_{\text{cyc}}ab=5,abc=-2 T = 6 cyc a 3 a b c 2 + a \mathcal T=6\displaystyle \sum_{\text{cyc}} \dfrac{a^3}{\underbrace{abc}_{-2}+a} = 6 cyc a 3 8 + ( a 3 8 ) a 2 =6\displaystyle \sum_{\text{cyc}} \dfrac{\overbrace{a^3}^{\color{#D61F06}{8}+(a^3-\color{#D61F06}{8})}}{a-2}

= 6 cyc [ 8 a 2 + a 2 + 2 a + 4 ] =6\displaystyle \sum_{\text{cyc}} \left[\dfrac{8}{a-2}+a^2+2a+4\right]

= 6 [ cyc 8 a 2 + cyc a 2 + 2 cyc a + cyc 4 ] =6\left[ \displaystyle \sum_{\text{cyc}}\dfrac{8}{a-2}+\displaystyle \sum_{\text{cyc}}a^2+2\displaystyle \sum_{\text{cyc}}a+\displaystyle \sum_{\text{cyc}}4\right] Now to calculate cyc 1 a 2 \displaystyle \sum_{\text{cyc}}\dfrac{1}{a-2} put x = 2 x=2 in f ( x ) f ( x ) = cyc 1 a x \dfrac{-f'(x)}{f(x)}=\displaystyle \sum_{\text{cyc}}\dfrac{1}{a-x} (See my soln here )to obtain cyc 1 a 2 = 11 8 \displaystyle \sum_{\text{cyc}}\dfrac{1}{a-2}=\dfrac{-11}{8} while cyc a 2 = ( cyc a ) 2 2 cyc a b = 39 \displaystyle\sum_{\text{cyc}}a^2=\left(\displaystyle\sum_{\text{cyc}}a\right)^2-2\displaystyle \sum_{\text{cyc}}ab=39 .

Now , T = 6 [ 8 × 11 8 + 39 + 14 + 12 ] = 324 \mathcal T= 6\left[8\times\dfrac{-11}{8}+39+14+12\right]=\boxed{324}

Beautiful solution, as always. Well done!

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Thanks ... The only place where I required pen and paper was in calculating cyc 1 a 2 \displaystyle\sum_{\text{cyc}}\dfrac{1}{a-2} ... :-)

Rishabh Jain - 4 years, 11 months ago

Very well explained.!

Rishu Jaar - 3 years, 7 months ago
Chew-Seong Cheong
Jun 26, 2016

Relevant wiki: Vieta's Formula Problem Solving - Intermediate

S = cyc 6 a 2 b c + 1 = 6 cyc a 2 a b c a + 1 Vieta’s formulas: a b c = 2 = 6 cyc a 2 2 a + 1 = 6 cyc a 3 a 2 Since a 3 7 a 2 + 5 a + 2 = 0 = 6 cyc 7 a 2 5 a 2 a 2 = 6 cyc 7 ( a 2 4 a + 4 ) + 23 ( a 2 ) + 16 a 2 = 6 [ 7 ( a + b + c ) 3 ( 14 ) + 3 ( 23 ) + 16 ( 1 a 2 + 1 b 2 + 1 c 2 ) ] Vieta’s: a + b + c = 7 = 6 [ 7 ( 7 ) 42 + 69 + 16 ( a b + b c + c a 4 ( a + b + c ) + 12 ( 2 a ) ( 2 b ) ( 2 c ) ) ] Vieta’s: a b + b c + c a = 5 = 6 [ 76 + 16 ( 5 4 ( 7 ) + 12 ( 8 ) ) ] ( 2 a ) ( 2 b ) ( 2 c ) = 2 3 7 ( 2 2 ) + 5 ( 2 ) + 2 = 8 = 324 \begin{aligned} S & = \sum_{\text{cyc}} \frac {6a^2}{bc+1} \\ & = 6 \sum_{\text{cyc}} \frac {a^2}{\frac {\color{#3D99F6}{abc}}a+1} \quad \quad \small \color{#3D99F6}{\text{Vieta's formulas: }abc = -2} \\ & = 6 \sum_{\text{cyc}} \frac {a^2}{\frac {\color{#3D99F6}{-2}}a+1} \\ & = 6 \sum_{\text{cyc}} \frac {\color{#3D99F6}{a^3}}{a-2} \quad \quad \small \color{#3D99F6}{\text{Since }a^3-7a^2+5a+2=0} \\ & = 6 \sum_{\text{cyc}} \frac {\color{#3D99F6}{7a^2-5a-2}}{a-2} \\ & = 6 \sum_{\text{cyc}} \frac {7(a^2-4a+4)+23(a-2)+16}{a-2} \\ & = 6 \left[7(\color{#3D99F6}{a+b+c})-3(14)+3(23) +16\left(\frac 1{a-2} + \frac 1{b-2} + \frac 1{c-2} \right) \right] \quad \quad \small \color{#3D99F6}{\text{Vieta's: }a+b+c = 7} \\ & = 6 \left[7(\color{#3D99F6}{7})-42+69 +16\left(\frac {\color{#3D99F6}{ab+bc+ca} - 4(a+b+c)+12}{-\color{#D61F06}{(2-a)(2-b)(2-c)}} \right) \right] \quad \quad \small \color{#3D99F6}{\text{Vieta's: }ab+bc+ca = 5} \\ & = 6 \left[76 +16\left(\frac {\color{#3D99F6}{5} - 4(7)+12}{-\color{#D61F06}{(-8)}} \right) \right] \quad \quad \small \color{#D61F06}{(2-a)(2-b)(2-c) = 2^3 -7(2^2) + 5(2)+2 = -8} \\ & = \boxed{324} \end{aligned}

Interesting approach, as always. Nicely done!

Typo: cyc \displaystyle \sum_{\text{cyc}}

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Thanks. Edited it.

Chew-Seong Cheong - 4 years, 11 months ago
Hung Woei Neoh
Jun 25, 2016

Relevant wiki: Vieta's Formula Problem Solving - Intermediate

A solution that uses Newton's sums:

From Vieta's formula, we get

a + b + c = 7 a b + a c + b c = 5 a b c = 2 \color{#3D99F6}{a+b+c = 7}\\ \color{#D61F06}{ab+ac+bc = 5}\\ \color{#EC7300}{abc = -2}

cyc 6 a 2 b c + 1 = cyc 6 a 3 a b c + a = cyc 6 a 3 a 2 = 6 a 3 a 2 + 6 b 3 b 2 + 6 c 3 c 2 = 6 a 3 ( b 2 ) ( c 2 ) + 6 b 3 ( a 2 ) ( c 2 ) + 6 c 3 ( a 2 ) ( b 2 ) ( a 2 ) ( b 2 ) ( c 2 ) = 6 a 3 ( b c 2 ( b + c ) + 4 ) + 6 b 3 ( a c 2 ( a + c ) + 4 ) + 6 c 3 ( a b 2 ( a + b ) + 4 ) a b c 2 ( a b + a c + b c ) + 4 ( a + b + c ) 8 = 6 a 3 ( 2 a 2 ( 7 a ) + 4 ) + 6 b 3 ( 2 b 2 ( 7 b ) + 4 ) + 6 c 3 ( 2 c 2 ( 7 c ) + 4 ) 2 2 ( 5 ) + 4 ( 7 ) 8 = 6 a 3 ( 2 a 10 + 2 a ) + 6 b 3 ( 2 b 10 + 2 b ) + 6 c 3 ( 2 c 10 + 2 c ) 2 10 + 28 8 = 12 a 2 60 a 3 + 12 a 4 12 b 2 60 b 3 + 12 b 4 12 c 2 60 c 3 + 12 c 4 8 = 12 ( a 4 + b 4 + c 4 ) 60 ( a 3 + b 3 + c 3 ) 12 ( a 2 + b 2 + c 2 ) 8 \displaystyle \sum_{\text{cyc}} \dfrac{6a^2}{bc+1}\\ =\displaystyle \sum_{\text{cyc}} \dfrac{6a^3}{\color{#EC7300}{abc}+a}\\ =\displaystyle \sum_{\text{cyc}} \dfrac{6a^3}{a-2}\\ =\dfrac{6a^3}{a-2}+\dfrac{6b^3}{b-2}+\dfrac{6c^3}{c-2}\\ =\dfrac{6a^3(b-2)(c-2) + 6b^3(a-2)(c-2)+6c^3(a-2)(b-2)}{(a-2)(b-2)(c-2)}\\ =\dfrac{6a^3\big(\color{#EC7300}{bc} - 2(\color{#3D99F6}{b+c})+4\big)+6b^3\big(\color{#EC7300}{ac} - 2(\color{#3D99F6}{a+c})+4\big)+6c^3\big(\color{#EC7300}{ab} - 2(\color{#3D99F6}{a+b})+4\big)}{\color{#EC7300}{abc} -2(\color{#D61F06}{ab+ac+bc})+4(\color{#3D99F6}{a+b+c}) -8}\\ =\dfrac{6a^3\big(\color{#EC7300}{\frac{-2}{a}} - 2(\color{#3D99F6}{7-a})+4\big)+6b^3\big(\color{#EC7300}{\frac{-2}{b}} - 2(\color{#3D99F6}{7-b})+4\big)+6c^3\big(\color{#EC7300}{\frac{-2}{c}} - 2(\color{#3D99F6}{7-c})+4\big)}{\color{#EC7300}{-2} -2(\color{#D61F06}{5})+4(\color{#3D99F6}{7}) -8}\\ =\dfrac{6a^3(\frac{-2}{a}-10+2a)+6b^3(\frac{-2}{b}-10+2b)+6c^3(\frac{-2}{c}-10+2c)}{-2-10+28 -8}\\ =\dfrac{-12a^2-60a^3+12a^4-12b^2-60b^3+12b^4-12c^2-60c^3+12c^4}{8}\\ =\dfrac{12(\color{magenta}{a^4+b^4+c^4})-60(\color{#69047E}{a^3+b^3+c^3})-12(\color{#20A900}{a^2+b^2+c^2})}{8}

Now, we apply Newton's sums:

a + b + c = 7 a 2 + b 2 + c 2 = ( a + b + c ) 2 2 ( a b + a c + b c ) = ( 7 ) 2 2 ( 5 ) = 39 a 3 + b 3 + c 3 = ( a + b + c ) ( a 2 + b 2 + c 2 ) ( a b + a c + b c ) ( a + b + c ) + 3 ( a b c ) = ( 7 ) ( 39 ) ( 5 ) ( 7 ) + 3 ( 2 ) = 232 a 4 + b 4 + c 4 = ( a + b + c ) ( a 3 + b 3 + c 3 ) ( a b + a c + b c ) ( a 2 + b 2 + c 2 ) + a b c ( a + b + c ) = ( 7 ) ( 232 ) ( 5 ) ( 39 ) + ( 2 ) ( 7 ) = 1415 \color{#3D99F6}{a+b+c = 7}\\ \color{#20A900}{a^2+b^2+c^2} = (\color{#3D99F6}{a+b+c})^2 - 2(\color{#D61F06}{ab+ac+bc}) = (\color{#3D99F6}{7})^2 - 2(\color{#D61F06}{5}) = \color{#20A900}{39}\\ \color{#69047E}{a^3+b^3+c^3} = (\color{#3D99F6}{a+b+c})(\color{#20A900}{a^2+b^2+c^2}) - (\color{#D61F06}{ab+ac+bc})(\color{#3D99F6}{a+b+c}) + 3(\color{#EC7300}{abc}) = (\color{#3D99F6}{7})(\color{#20A900}{39}) - (\color{#D61F06}{5})(\color{#3D99F6}{7}) + 3(\color{#EC7300}{-2}) =\color{#69047E}{232}\\ \color{magenta}{a^4+b^4+c^4} = (\color{#3D99F6}{a+b+c})(\color{#69047E}{a^3+b^3+c^3}) - (\color{#D61F06}{ab+ac+bc})(\color{#20A900}{a^2+b^2+c^2}) + \color{#EC7300}{abc}(\color{#3D99F6}{a+b+c}) = (\color{#3D99F6}{7})(\color{#69047E}{232}) - (\color{#D61F06}{5})(\color{#20A900}{39}) + (\color{#EC7300}{-2})(\color{#3D99F6}{7}) =\color{magenta}{1415}

Substitute these values in:

12 ( a 4 + b 4 + c 4 ) 60 ( a 3 + b 3 + c 3 ) 12 ( a 2 + b 2 + c 2 ) 8 = 12 ( 1415 ) 60 ( 232 ) 12 ( 39 ) 8 = 16980 13920 468 8 = 2592 8 = 324 \dfrac{12(\color{magenta}{a^4+b^4+c^4})-60(\color{#69047E}{a^3+b^3+c^3})-12(\color{#20A900}{a^2+b^2+c^2})}{8}\\ =\dfrac{12(\color{magenta}{1415})-60(\color{#69047E}{232})-12(\color{#20A900}{39})}{8}\\ =\dfrac{16980-13920-468}{8}\\ =\dfrac{2592}{8}\\ =\boxed{324}

Nice... (+1)

Rishabh Jain - 4 years, 11 months ago

You might like this question too. Enjoy!

Pi Han Goh - 4 years, 11 months ago

Log in to reply

Thanks for sharing!

Hung Woei Neoh - 4 years, 11 months ago

Instead of expanding the denominator, notice that (a-2)(b-2)(c-2) is just -f (2).

boon yang - 4 years, 11 months ago

Log in to reply

@boon yang Well spotted!

Mehul Arora - 4 years, 11 months ago

@Hung Woei Neoh

Looks like you got a solution faster than yours :P

Mehul Arora - 4 years, 11 months ago

Log in to reply

I got 2 2 , not 1 1 !

Hung Woei Neoh - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...