Everything is symmetrical in its own way

Algebra Level 1

Find A : S : K \color{#3D99F6}{A}:\color{#D61F06}{S}:\color{#20A900}{K} if A + S 2 = S + K 3 = A + K 4 . \dfrac{\color{#3D99F6}{A}+\color{#D61F06}{S}}{2}=\dfrac{\color{#D61F06}{S}+\color{#20A900}{K}}{3}=\dfrac{\color{#3D99F6}{A}+\color{#20A900}{K}}{4}.

4 : 9 : 16 4:9:16 4 : 3 : 2 4:3:2 2 : 3 : 4 2:3:4 3 : 1 : 5 3:1:5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 28, 2015

Let A + S 2 = S + K 3 = A + K 4 = X \dfrac{A+S}{2} = \dfrac{S+K}{3} = \dfrac{A+K}{4} = \color{#3D99F6}{X} . Then we have:

{ A + S = 2 X . . . ( 1 ) S + K = 3 X . . . ( 2 ) A + K = 4 X . . . ( 3 ) { ( 3 ) ( 1 ) : K S = 2 X . . . ( 4 ) ( 4 ) + ( 2 ) : 2 K = 5 X K = 5 2 X ( 2 ) : S = 3 X K = 1 2 X ( 1 ) : A = 2 X S = 3 2 X \begin{cases} A+S = 2X &...(1) \\ S+K = 3X &...(2) \\ A+K = 4X &...(3) \end{cases} \quad \Rightarrow \begin{cases} (3)-(1): & K-S = 2X & ...(4) \\ (4)+(2): & 2K = 5X & \Rightarrow K = \dfrac{5}{2}X \\ (2): & S = 3X - K = \dfrac{1}{2}X \\ (1): & A = 2X - S = \dfrac{3}{2}X \end{cases}

A : S : K = 3 : 1 : 5 \Rightarrow A:S:K = \boxed{3:1:5}

Nice solution sir, as usual! Thanks for sharing it!

Sandeep Bhardwaj - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...