Everything to do with a circle!

Geometry Level 3

A triangle exists such that the ratio of the sides a : b : c a:b:c is 7 : 8 : 9 7:8:9 . Find cos A : cos B \cos A : \cos B .

14 : 11 14:11 12 : 63 12:63 14 : 63 14:63 12 : 11 12:11

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ayush G Rai
Sep 21, 2016

We can use cosine formula.Let a = 7 x , b = 8 x a=7x,b=8x and c = 9 x . c=9x.
a 2 = b 2 + c 2 2 b c . c o s A a^2=b^2+c^2-2bc.cosA
( 7 x ) 2 = ( 8 x ) 2 + ( 9 x ) 2 2 × ( 8 x ) × ( 9 x ) × c o s A c o s A = 2 3 {(7x)}^2={(8x)}^2+{(9x)}^2-2\times(8x)\times(9x)\times cosA\Rightarrow cosA=\frac{2}{3}
b 2 = a 2 + c 2 2 a c . c o s B b^2=a^2+c^2-2ac.cosB
( 8 x ) 2 = ( 7 x ) 2 + ( 9 x ) 2 2 × ( 7 x ) × ( 9 x ) × c o s B c o s B = 11 21 {(8x)}^2={(7x)}^2+{(9x)}^2-2\times(7x)\times(9x)\times cosB\Rightarrow cosB=\frac{11}{21}
Therefore, c o s A : c o s B = 14 : 11 . cos A:cos B=\boxed{14:11}.

nice solution

abhishek alva - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...