Everything Touches, Part 2

Geometry Level 3

A B C D ABCD is a square with side length 16. Two quadrants are centered at A A and B B . Find the sum of the radii of the two inscribed circles.

Part 1


The answer is 7.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 31, 2020

Let the radius of the small and big circles be r r and R R respectively, M M and N N be the midpoints of C D CD and A B AB respectively, and P Q PQ be a diameter of the big circle such that A A , P P , O O , and Q Q are colinear,

By tangent-secant theorem , we have:

A P A Q = A N 2 ( 16 2 R ) 16 = 8 2 8 R = 2 R = 6 \begin{aligned} AP \cdot AQ & = AN^2 \\ (16-2R)\cdot 16 & = 8^2 \\ 8-R & = 2 \\ \implies R & = 6 \end{aligned}

By Pythagorean theorem , we have:

O A 2 = A N 2 + O N 2 ( 16 + r ) 2 = 8 2 + ( 16 r ) 2 ( 16 + r ) 2 ( 16 r ) 2 = 64 64 r = 64 r = 1 \begin{aligned} O'A^2 & = AN^2 + O'N^2 \\ (16+r)^2 & = 8^2 + (16-r)^2 \\ (16+r)^2 - (16-r)^2 & = 64 \\ 64 r & = 64 \\ \implies r & = 1 \end{aligned}

Therefore r + R = 1 + 6 = 7 r + R = 1 + 6 = \boxed 7 .

Sathvik Acharya
Dec 30, 2020

Claim: The larger circle centered at O O has radius 6 6 . Proof: Note that the points A , O A, O and the point of contact, G G are all collinear. Let the radius of the larger circle be R R . In the figure above, applying the Pythagorean Theorem in A E O \triangle AEO , A E 2 + E O 2 = O A 2 \;\;\;\;\;\;\;\;\;\;AE^2+EO^2=OA^2 8 2 + R 2 = ( 16 R ) 2 = 1 6 2 32 R + R 2 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\implies 8^2+R^2=(16-R)^2=16^2-32R+R^2 R = 1 6 2 8 2 32 = 6 \implies R=\frac{16^2-8^2}{32}=6


Claim: The smaller circle centered at O O' has radius 1 1 . Proof: Note that the points A , O A, O' and the point of contact, I I are all collinear. Let the radius of the smaller circle be r r . In the figure above, applying the Pythagorean Theorem in A H O \triangle AHO' , O H 2 + A H 2 = O A 2 \;\;\;\;\;\;\;\;\;O'H^2+AH^2=O'A^2 8 2 + ( 16 r ) 2 = ( 16 + r ) 2 \;\;\;\;\;\;\;\implies 8^2+(16-r)^2=(16+r)^2 8 2 + 1 6 2 32 r + r 2 = 1 6 2 + 32 r + r 2 \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\implies 8^2+16^2-32r+r^2=16^2+32r+r^2 r = 8 2 64 = 1 \implies r=\frac{8^2}{64}=1\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;


Therefore, the sum of the radii of the two inscribed circles is R + r = 7 R+r=\boxed{7}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...