Everywhere there's circles!

Geometry Level pending

In square A B C D ABCD with side length a a , E E is a midpoint of B C \overline{BC} .

Extend the red circles above to an infinite number of red circles. For each integer n 1 n \geq 1 , circle w n w_{n} is tangent to w n 1 w_{n - 1} and tangent to diagonal A C \overline{AC} and A D \overline{AD} and the green and pink circles are tangent to E D \overline{ED} and diagonal A C \overline{AC} as shown above and tangent to B C \overline{BC} and C D \overline{CD} respectively.

Let S S be the sum of the areas of all the circles in the above diagram.

Find S A A B C D \dfrac{S}{A_{ABCD}} .


The answer is 0.3606644316482196.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Mar 4, 2021

For red circle with radius r r :

For A C : y = x \overline{AC}: y = x and m E D = 2 y = 2 x + 2 a x = y = 2 a 3 m_{\overline{ED}} = -2 \implies y = -2x + 2a \implies x = y = \dfrac{2a}{3}

G ( 2 a 3 , 2 a 3 ) A G = 2 2 3 a \implies G(\dfrac{2a}{3},\dfrac{2a}{3}) \implies \overline{AG} = \dfrac{2\sqrt{2}}{3}a and G D = 5 3 a \overline{GD} = \dfrac{\sqrt{5}}{3}a

A A G D = 1 2 ( a ) ( 2 a 3 ) = a 2 3 = \implies A_{\triangle{AGD}} = \dfrac{1}{2}(a)(\dfrac{2a}{3}) = \dfrac{a^2}{3} = a r 2 ( 3 + 2 2 + 5 3 ) \dfrac{ar}{2}(\dfrac{3 + 2\sqrt{2} + \sqrt{5}}{3}) \implies

2 a 2 ( 3 + 2 2 + 5 ) a r = 0 a ( 2 a ( 3 + 2 2 + 5 ) r ) = 0 2a^2 - (3 + 2\sqrt{2} + \sqrt{5})ar = 0 \implies a(2a - (3 + 2\sqrt{2} + \sqrt{5})r) = 0 and

a 0 r = 2 a 5 + 2 2 + 3 a \neq 0 \implies\boxed{r = \dfrac{2a}{\sqrt{5} + 2\sqrt{2} + 3}}

For green circle: with radius r 2 r_{2} .

h E G C = a 2 a 2 = a 3 , E G = 5 6 a h_{\triangle{EGC}} = a - \dfrac{2a}{2} = \dfrac{a}{3}, \overline{EG} = \dfrac{\sqrt{5}}{6}a and G C = 2 3 a \overline{GC} = \dfrac{\sqrt{2}}{3}a \implies

A E G C = 1 2 ( a 2 ) ( a 3 ) = a 2 12 = A_{\triangle{EGC}} = \dfrac{1}{2}(\dfrac{a}{2})(\dfrac{a}{3}) = \dfrac{a^2}{12} = 1 2 ( a r 2 ) ( 5 + 2 2 + 3 6 ) \dfrac{1}{2}(a r_{2})(\dfrac{\sqrt{5} + 2\sqrt{2} + 3}{6}) \implies

a ( a ( 5 + 2 2 + 3 ) r 2 ) = 0 a(a - (\sqrt{5} + 2\sqrt{2} + 3)r_{2}) = 0 and a 0 r 2 = a 5 + 2 2 + 3 a \neq 0 \implies \boxed{r_{2} = \dfrac{a}{\sqrt{5} + 2\sqrt{2} + 3}}

Similarly using the same method for the pink circle with radius r 3 r_{3} we have:

r 3 = a 5 + 2 + 3 \boxed{r_{3} = \dfrac{a}{\sqrt{5} + \sqrt{2} + 3}}

Let R 1 = r = 2 a 5 + 2 2 + 3 \boxed{R_{1} = r = \dfrac{2a}{\sqrt{5} + 2\sqrt{2} + 3}}

O w 0 = 4 + 2 2 R 1 \overline{Ow_{0}} = \sqrt{4 + 2\sqrt{2}}R_{1}

O A 1 w 0 w 1 A 2 w 0 4 + 2 2 R 1 R 1 = R 1 + R 2 R 1 R 2 \triangle{OA_{1}w_{0}} \sim \triangle{w_{1}A_{2}w_{0}} \implies \dfrac{\sqrt{4 + 2\sqrt{2}}R_{1}}{R_{1}} = \dfrac{R_{1} + R_{2}}{R_{1} - R_{2}} \implies

( 4 + 2 2 1 ) R 1 = ( 4 + 2 2 + 1 ) R 2 (\sqrt{4 + 2\sqrt{2}} - 1)R_{1} = (\sqrt{4 + 2\sqrt{2}} + 1)R_{2} \implies R 2 = 4 + 2 2 1 4 + 2 2 + 1 R 1 R_{2} = \dfrac{\sqrt{4 + 2\sqrt{2}} - 1}{\sqrt{4 + 2\sqrt{2}} + 1}R_{1}

R 3 = 4 + 2 2 1 4 + 2 2 + 1 R 2 = ( 4 + 2 2 1 4 + 2 2 + 1 ) 2 R 1 R_{3} = \dfrac{\sqrt{4 + 2\sqrt{2}} - 1}{\sqrt{4 + 2\sqrt{2}} + 1}R_{2} = (\dfrac{\sqrt{4 + 2\sqrt{2}} - 1}{\sqrt{4 + 2\sqrt{2}} + 1})^2R_{1}

In General: R n = ( 4 + 2 2 1 4 + 2 2 + 1 ) n 1 R 1 R_{n} = (\dfrac{\sqrt{4 + 2\sqrt{2}} - 1}{\sqrt{4 + 2\sqrt{2}} + 1})^{n - 1}R_{1}

A n = π R n 2 = π R 1 2 ( ( 4 + 2 2 1 4 + 2 2 + 1 ) 2 ) n 1 \implies A_{n} = \pi R_{n}^2 = \pi R_{1}^2((\dfrac{\sqrt{4 + 2\sqrt{2}} - 1}{\sqrt{4 + 2\sqrt{2}} + 1})^2)^{n - 1}

A = n = 1 A n = π R 1 2 n = 1 ( ( 4 + 2 2 1 4 + 2 2 + 1 ) 2 ) n 1 \implies A = \sum_{n = 1}^{\infty} A_{n} = \pi R_{1}^2\sum_{n = 1}^{\infty} ((\dfrac{\sqrt{4 + 2\sqrt{2}} - 1}{\sqrt{4 + 2\sqrt{2}} + 1})^2)^{n - 1}

= ( 4 + 2 2 + 1 ) 2 4 4 + 2 2 π R 1 2 = \dfrac{(\sqrt{4 + 2\sqrt{2}} + 1)^2}{4\sqrt{4 + 2\sqrt{2}}}\pi R_{1}^2 \implies

A A A B C D = ( 4 + 2 2 + 1 ) 2 4 + 2 2 ( 5 + 2 2 + 3 ) 2 0.2413244723253244 \dfrac{A}{A_{ABCD}} = \dfrac{(\sqrt{4 + 2\sqrt{2}} + 1)^2}{\sqrt{4 + 2\sqrt{2}}(\sqrt{5} + 2\sqrt{2} + 3)^2} \approx \boxed{0.2413244723253244}

and A A A B C D = ( r 2 2 + r 3 2 ) π = ( ( 1 5 + 2 2 + 3 ) 2 + ( 1 5 + 2 + 3 ) 2 ) π \dfrac{A^{*}}{A_{ABCD}} = (r_{2}^2 + r_{3}^2)\pi = ((\dfrac{1}{\sqrt{5} + 2\sqrt{2} + 3})^2 + (\dfrac{1}{\sqrt{5} + \sqrt{2} + 3})^2)\pi

0.1193399593228952 \approx \boxed{0.1193399593228952}

S A A B C D = A + A A A B C D 0.3606644316482196 \implies \dfrac{S}{A_{ABCD}} = \dfrac{A + A^{*}}{A_{ABCD}} \approx \boxed{0.3606644316482196}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...