Exceeding 2 000 000!

Algebra Level 2

Find the least value of n n such that the sum of 1 + 2 + 4 + 8 + 1 + 2 + 4 + 8 + \cdots to n n terms would exceed 2000000 2 000 000

22 20 21 18 19

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Syed Hamza Khalid
Sep 23, 2017

Sum to n n terms is

S u b s t i t u t e a = 1 , r = 2 i n t o S n = a ( r n 1 ) r 1 \color{#3D99F6}Substitute\ a =1, r=2\ into\ S_n=\frac{a(r^n -1)}{r - 1} S n = 1 ( 2 n 1 ) 2 1 = 2 n 1 \large S_n = 1\frac{(2^n - 1)}{2 - 1} =\ 2^n - 1

If this is to exceed 2 000 000 then:

S n > 2000000 S_n > 2 000 000

2 n 1 > 2000000 2^n - 1 > 2 000 000

2 n > 2000001 2^n > 2 000 001 A d d 1 \color{#3D99F6}Add\ 1

n l o g ( 2 ) > l o g ( 2000001 ) n log(2) > log(2 000 001)

n > l o g ( 2000001 ) l o g ( 2 ) n > \frac{log(2 000 001)}{log(2)} U s e l a w o f l o g s \color{#3D99F6}Use\ law\ of\ logs

n > 20.9 \large \color{#20A900}n > 20.9

It needs 21 terms to exceed 2 000 000
R o u n d t h e u p n t o t h e n e a r e s t i n t e g e r \color{#3D99F6}Round\ the\ up\ n\ to\ the\ nearest\ integer n = 21 \large {\color{#D61F06}n = 21}

The nth term is 2 n 2^n and the sum of n terms is 2 n + 1 1 2^{n+1}-1 . Now solve the equation 2 n + 1 1 = 2000000 2^{n+1}-1=2000000 . This gives n = l o g 2 ( 2000001 ) 21 n = log_2(2000001)\approx 21 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...