Exciting Sequences

Algebra Level 2

1 + 3 + 5 + 7 + + 199 2 + 4 + 6 + 8 + + 200 = ? \large \frac{1 + 3 + 5 + 7 +\ldots+ 199}{2 + 4 + 6 + 8 +\ldots+ 200} = \ ?

100 101 \frac{100}{101} 98 99 \frac{98}{99} 101 102 \frac{101}{102} 99 100 \frac{99}{100}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

20 solutions

Mohammad Al Ali
May 19, 2014

I just noticed my old solution was invalid.

Here is the alternative valid solution,

There are obviously the same number of terms in the top and bottom, since for each term k k in the top,a k + 1 k+1 corresponds in the bottom. The ratio is equal to

t e r m s t o p 2 ( T 1 s t + T l a s t ) t e r m s b o t t o m 2 ( B 1 s t + B l a s t ) \frac{ \frac{terms_{top}}{2} (T_{1st}+T_{last)} }{ \frac{terms_{bottom}}{2} (B_{1st}+B_{last})}

,but since the numbers of terms are the same, the first terms cancel and we are left with

T 1 s t + T l a s t B 1 s t + B l a s t = 1 + 199 2 + 200 = 200 202 = 100 101 \frac{T_{1st} + T_{last}}{B_{1st} + B_{last}} = \frac{1+199}{2+200} = \frac{200}{202} = \boxed{\frac{100}{101}}

It is Gauss who first found this

Auguste Richards - 4 years ago

It's 100/110

lord Vadrr - 4 years, 10 months ago

Log in to reply

How do you get that answer?

Gia Hoàng Phạm - 2 years, 1 month ago
Bryan Sangtania
May 25, 2014

(1+199)+(3+197)+......+(97+103)+(99+101) / (2+200)+(4+198)+.....+(98+104)+(100+102)= (50)(200)/(50)(202)=100/101

nice solution :)

Ojasee Duble - 4 years, 3 months ago

A=1+3+5+7....+199 B=2+4+6+8...+200 Equations A+B= 201 100 = 20,100 A+100=B Solve 2 A=20,000; A=10,000 B=10,100 A/B= 100/101

Frank Jamestown NY

Frank Petiprin - 4 years, 2 months ago
Kyriakos Sideris
Sep 11, 2014

The ratio can be written as

i = 0 99 ( 2 i + 1 ) i = 0 99 ( 2 i + 2 ) = 100 + i = 0 99 ( 2 i ) 200 + i = 0 99 ( 2 i ) = 100 + 2 i = 0 99 i 200 + 2 i = 0 99 i \frac {\displaystyle \sum_{i=0}^{99}(2 \cdot i+1)}{\displaystyle \sum_{i=0}^{99}(2 \cdot i+2)} = \frac {\displaystyle 100 + \sum_{i=0}^{99}(2 \cdot i)}{\displaystyle 200 + \sum_{i=0}^{99}(2 \cdot i)} = \frac {\displaystyle 100 + 2 \cdot \sum_{i=0}^{99}i}{\displaystyle 200 + 2 \cdot \sum_{i=0}^{99}i}

The summation 1+2+...+99 is equal to 0+99+1+98+...+49+50 which is equal to 50 99 50 \cdot 99 . Think of it like folding the two sides of summation in order to create the same number in each addition. There is a famous anecdote from Gauss' life on this arithmetic progression. Finally:

100 + 2 50 99 200 + 2 50 99 = 100 + 100 99 100 2 + 100 99 = \frac {\displaystyle 100 + 2 \cdot 50 \cdot 99}{\displaystyle 200 + 2 \cdot 50 \cdot 99} = \frac {\displaystyle 100 + 100 \cdot 99}{\displaystyle 100 \cdot 2 + 100 \cdot 99} =

If you divide both numerator and denominator with 100 then:

= 1 + 1 99 2 1 + 1 99 = 100 101 = \frac {\displaystyle 1 + 1 \cdot 99}{\displaystyle 2 \cdot 1 + 1 \cdot 99} = \frac {\displaystyle 100}{\displaystyle 101}

It's 100/110

lord Vadrr - 4 years, 10 months ago

Log in to reply

How do you get that answer?

Gia Hoàng Phạm - 2 years, 1 month ago
Robert DeLisle
Dec 20, 2017

Using two very familiar summation formulae:

The sum of odd integers 1...2 n 1 1 ... 2n - 1 is n 2 n^2

The sum of integers 1,2,...,n is n ( n + 1 ) 2 \frac { n(n+1)}{2}

The given expression can be written as n 2 2 ( n ( n + 1 ) 2 ) \frac{n^2}{ 2( \frac { n(n+1)}{2})} = n n + 1 = \frac {n} {n+1} with n = 100.

Therefore the answer is 100 101 \boxed { \frac{100}{101}}

Asif Malik
Jul 25, 2016
  • 1 + 3 + 5 + . . . + 199 2 + 4 + 6 + . . . + 200 \frac{1+3+5+...+199}{2+4+6+...+200} Adding 1 in each term in Numerator and Subtracting 100 We get 2 + 4 + 6 + . . . 200 100 2 + 4 + 6 + . . . 200 \frac{2+4+6+...200 - 100}{2+4+6+...200} = 1 - 100 2.50.101 \frac{100}{2.50.101} = 1 - 1 101 \frac{1}{101} = 100 101 \frac{100}{101}
Gabriele Moro
Feb 24, 2016

~1+3+5+...+199=100*100=10000 (Sum of The first n odd numbers)

~2+4+6+...+200=(200 201)/2-100 100=10100 ((I used The fact that The Sum of The first n numbers is given by n(n+1)/2 and The Sum of The first n odd numbers is n*n; subtracting this two numbers we Will find The Sum of The first n Even numbers.(There is also The Way to find this number using The formula of The Sum of The first n Even number But I didn't remember it ahahah))

So The results is 10000/10100=100/101.

Sorry for My English ahaha

Craig Robertson
Nov 14, 2015

k = 1 100 ( 2 k 1 ) = 1 100 2 = k = 1 100 2 k 100 = 1 100 2 = 1 100 2 = 1 100 = 1 100 100 101 = 1 1 101 = 100 101 . \frac{\sum_{k=1}^{100} (2k -1)}{\sum_{\ell=1}^{100} 2\ell} =\frac{\sum_{k=1}^{100} 2k \ - 100}{\sum_{\ell=1}^{100} 2\ell} =1 -\frac{100}{2\sum_{\ell=1}^{100}\ell} = 1 - \frac{100}{100\cdot101} = 1 - \frac{1}{101} = \frac{100}{101}.

Bharat Pandey
Jan 20, 2015

½ no of odd nos x sum of first and last odd number ÷ ½ no of even nos + sum of first and last even no

Oximas Omar
Apr 24, 2021

hint: use gausses method for summing numbers

btw I love how old these problems are like there are some 8 years old comments in here

Ondřej Chmelík
May 19, 2019

We can express both numenator and denominator with a sum:

The solution is 100 101 \frac{100}{101} .

Betty BellaItalia
Apr 23, 2017

Stephen Safee
Sep 6, 2016

First, let's deduce the sum of the numerator, 1+3+5+7+...+199 (which is really the sum of all the odd numbers from 1 till 200).

*1 can "pair up" with 199 to give 200. The same goes for 3 and 197, 5 +195, etc... until 99+101.
*Since there are 50 odd numbers in the first 100 integers, and 50 more in the next 100 integers, we can sum exactly 50 pairs in this manner. This implies:

Numerator = 50(200) = 10 000

The same process can be applied to the denominator, except for the pair 100+200 that yields 300 instead of 200. That is 100 more than the other pairs, so:

Denominator = 50(200)+100 = 10 100

Hence, 10000 10100 \frac{10 000}{10 100} = 100 101 \frac{100}{101}

Mafia maNiAc
Aug 5, 2016

First find the value of 'n' (no of terms) in both numerator and denominator . Then use the formula→ Sn= n÷2(a+l) in both numerator and denominator u will get '6700' in NUMERATOR and '6767' in DENOMINATOR. by simplifing u will get 100÷101

= 1 + 3 + 5 + . . . + 199 2 + 4 + 6 + . . . + 200 \frac{1 + 3 + 5 + ... + 199}{2 + 4 + 6 + ... +200} = 100 × 100 100 × 101 \frac{100 \times 100 }{100 \times 101} = 100 101 \frac{100}{101}

Dev Vrat Pathak
Dec 10, 2015

Apply the concept of Arithmetic Progression..... For instant answer....."hmm"...trust me..

First write the equation as: x 100 x = y \frac{x - 100}{x} = y

y = 1 100 x y = 1 - \frac{100}{x}

Use arithmetic series equation:

x = n ( a 1 + a n ) 2 = 100 ( 2 + 200 ) 2 = 50 ( 202 ) x = \frac{n(a_1 + a_n)}{2} = \frac{100(2 + 200)}{2} = 50(202)

y = 1 100 50 ( 202 ) = 1 1 101 = 100 101 y = 1 - \frac{100}{50 ( 202 )} = 1 - \frac{1}{101} = \frac{100}{101}

(N^2) / N(N+1), here N=100, so 10000 / 10100 = 100/101

Kim Chang Jin
Sep 21, 2014

1+3+...+199=100^2, 2+4+...+200=2(1+2+...+100)=100 101 hence 100^2/(100 101)=100/101

Sajid Hossain
May 28, 2014

T h e r e a r e 100 p a i r s , T h o s e s u m i s 200 ( E x , ( 1 + 199 ) , ( 3 + 197 ) , . . . . . . ( 99 + 101 ) e t c . ) o n t h e N u m e r a t o r . A n d 100 p a i r s , T h o s e s u m i s 202 ( E x , ( 2 + 200 ) , ( 4 + 198 ) , . . . . . . ( 100 + 102 ) e t c . ) o n t h e D e n o m i n a t o r . S o , 1 + 3 + 5 + . . . . . . + 199 2 + 4 + 6 + . . . . . . + 200 = 100 × 200 100 × 202 = 200 202 = 100 101 There\quad are\quad 100\quad pairs,\quad Those\quad sum\quad is\quad 200\quad (Ex,(1+199),(3+197),......(99+101)\quad etc.)\quad on\quad the\quad Numerator.\\ And\quad 100\quad pairs,\quad Those\quad sum\quad is\quad 202\quad (Ex,(2+200),(4+198),......(100+102)\quad etc.)\quad on\quad the\quad Denominator.\\ So,\quad \frac { 1+3+5+......+199 }{ 2+4+6+......+200 } =\frac { 100\times 200 }{ 100\times 202 } =\frac { 200 }{ 202 } =\boxed { \frac { 100 }{ 101 } }

No, there aren't 100 pairs but 50. It should be (50 X 200)/(50 X 202) = 100/101. The final answer is still right though.

Mas Daffa Pratamadirdja - 6 years, 10 months ago
John Dore
May 24, 2014

Express a/b as ((a+b) - b)/b where a is the sequence 1+3+...199 and b is the sequence 2+4+...200

This becomes ((1...200) -(1..100))/(1 ... 100) which simplifies to ((200 X 201) - (100 X 101))/(100 X 101) using the summation of series and removing division by 2 from each expression leaving (201-101)/101 = 100/101

((200 X 201) - (100 X 101))/(100 X 101) should read ((200 X 201) - (200 X 101))/(200 X 101)

John Dore - 7 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...