Extraordinary Ellipse

Geometry Level 5

An ellipse is inscribed in a triangle of angles π 7 \frac{\pi}{7} , 2 π 7 \frac{2\pi}{7} , and 4 π 7 \frac{4\pi}{7} .

The foci F 1 F_1 and F 2 F_2 of the ellipse are such that

{ F 1 A B = F 1 B C = F 1 C A F 2 A C = F 2 B A = F 2 C B \begin{cases} \angle F_1AB=\angle F_1BC=\angle F_1CA \\ \angle F_2AC=\angle F_2BA=\angle F_2CB \end{cases}

Find the eccentricity of the ellipse.

2 7 \dfrac{2}{\sqrt{7}} 1 2 \dfrac{1}{\sqrt{2}} 2 6 7 \dfrac{2\sqrt{6}}{7} 7 4 \dfrac{\sqrt{7}}{4} 3 2 \dfrac{\sqrt{3}}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jul 8, 2020

We are looking at the Brocard inellipse of the triangle, which has foci at the first and second Brocard points. and semimajor and semiminor axes A = a b c 2 a 2 b 2 + b 2 c 2 + c 2 a 2 B = 2 a b c Δ a 2 b 2 + b 2 c 2 + c 2 a 2 A \; = \; \frac{a b c}{2\sqrt{a^2b^2+ b^2c^2 + c^2a^2}} \hspace{2cm} B \; = \; \frac{2a b c \Delta}{a^2b^2 + b^2c^2 + c^2a^2} and hence eccentricity E = 1 B 2 A 2 = a 4 + b 4 + c 4 a 2 b 2 + b 2 c 2 + c 2 a 2 1 E \; = \; \sqrt{1 - \frac{B^2}{A^2}} \; = \; \sqrt{\frac{a^4 + b^4 + c^4}{a^2b^2 + b^2c^2 + c^2a^2} - 1} where a , b , c a,b,c are the sides of the triangle. Putting a = sin π 7 a = \sin\tfrac{\pi}{7} , b = sin 2 π 7 b = \sin\tfrac{2\pi}{7} and c = sin 4 π 7 c = \sin\tfrac{4\pi}{7} into this formula gives E = 1 2 E = \boxed{\tfrac{1}{\sqrt{2}}} .


Here is a detailed, but elementary, proof of the above.

First, let us show that the Brocard points exist. If there exists a point P P such that B A P = C B P = A C P \angle BAP = \angle CBP = \angle ACP , then the Alternate Segment Theorem tells us that the line A B AB is tangential to the circumcircle of the triangle A C P ACP at A A , and that the line B C BC is tangential to the circumcircle of the triangle A P B APB . Draw the circle that has A C AC as a chord and which is tangential to A B AB at A A , and draw the circle that has A B AB as a chord and which is tangential to A C AC at B B . Let P P be the point (other than A A ) where these circles intersect. Then A C P = B A P = C B P \angle ACP = \angle BAP = \angle CBP , and hence P P is a Brocard point (called the first Brocard point), and we note that A C AC is also tangential to the circumcircle of the triangle B C P BCP at C C as well. Note that B P C = π A \angle BPC = \pi - A , C P A = π B \angle CPA = \pi - B and A P B = π C \angle APB = \pi - C . Let the common angle P A B = P B C = P C A = ω \angle PAB = \angle PBC = \angle PCA = \omega .

First note the following triangle identities: cot A cot B cot C + csc A csc B csc C = cot A + cot B + cot C cot A cot B + cot A cot C + cot B cot C = 1 \begin{aligned} \cot A \cot B \cot C + \csc \,A \,\csc \,B\, \csc \,C & = \; \cot A + \cot B + \cot C \\ \cot A \cot B + \cot A \cot C + \cot B \cot C & = \; 1 \end{aligned} The first follows because 2 cos 2 ( 1 2 ( u + v + w ) ) sin u sin v sin w [ cot u cot v cot w cot u cot v cot w + csc u csc v csc w ] 2\cos^2\left(\tfrac12(u+v+w)\right) \; \equiv \; \sin u \sin v \sin w\big[ \cot u \cot v \cot w - \cot u - \cot v - \cot w + \csc\, u \,\csc\, v \,\csc\, w\big] for any u , v , w u,v,w , and hence the fact that A + B + C = π A+B+C=\pi gives the result. The second follows because cot C = cot ( π A B ) = 1 cot A cot B cot A + cot B \cot C \; = \; \cot(\pi - A - B) \; = \; \frac{1 - \cot A \cot B}{\cot A + \cot B} Applying the Sine Rule to the triangles A B P ABP . B P C BPC and C P A CPA , we see that y a sin ( B ω ) = y b sin ω y b sin ( C ω ) = y c sin ω y c sin ( A ω ) = y a sin ω \frac{y_a}{\sin(B-\omega)} = \frac{y_b}{\sin \omega} \hspace{1cm} \frac{y_b}{\sin(C-\omega)} = \frac{y_c}{\sin \omega} \hspace{1cm} \frac{y_c}{\sin(A-\omega)} = \frac{y_a}{\sin\omega} and hence sin ( A ω ) sin ( B ω ) sin ( C ω ) = sin 3 ω ( cot ω cot A ) ( cot ω cot B ) ( cot ω cot C ) = csc A csc B csc C cot 3 ω ( cot A + cot B + cot C ) cot 2 ω + cot ω ( cot A + cot B + cot C ) = 0 ( cot ω cot A cot B cot C ) ( ω 2 + 1 ) = 0 \begin{aligned} \sin(A-\omega)\sin(B-\omega)\sin(C-\omega) & = \; \sin^3\omega \\ (\cot\omega - \cot A)(\cot\omega - \cot B)(\cot\omega - \cot C) & = \; \csc\,A\,\csc\,B\,\csc\,C \\ \cot^3\omega - (\cot A + \cot B + \cot C)\cot^2\omega + \cot\omega - (\cot A +\cot B +\cot C) & = \; 0 \\ (\cot\omega - \cot A - \cot B - \cot C)(\omega^2 +1) & = \; 0 \end{aligned} and hence the Brocard angle ω \omega is unique, and cot ω = cot A + cot B + cot C \cot\omega \; = \; \cot A + \cot B + \cot C More applications of the Sine Rule tell us that y a sin ω = b sin A y b sin ω = c sin B y c sin ω = a sin C \frac{y_a}{\sin\omega} = \frac{b}{\sin A} \hspace{1cm} \frac{y_b}{\sin\omega} \; =\; \frac{c}{\sin B} \hspace{1cm} \frac{y_c}{\sin\omega} \; = \; \frac{a}{\sin C} and hence y a = 2 R b sin ω a y b = 2 R c sin ω b y c = 2 R a sin ω c y_a \; = \; \frac{2Rb\sin \omega}{a} \hspace{1cm} y_b \; = \; \frac{2Rc\sin\omega}{b} \hspace{1cm} y_c \; = \; \frac{2Ra\sin\omega}{c} where R R is the circumradius of A B C ABC . If we drop perpendiculars from P P to the sides B C BC , C A CA , A B AB , with feet D D , E E , F F and lengths x a x_a , x b x_b , x c x_c respectively, simple trigonometry tells us that x a = y b sin ω = 2 R c sin 2 ω b x b = y c sin ω = 2 R a sin 2 ω c x c = y a sin ω = 2 R b sin 2 ω a x_a \; = \; y_b\sin\omega \;=\; \frac{2Rc\sin^2 \omega}{b} \hspace{1cm} x_b \; = \; y_c\sin\omega \;=\; \frac{2Ra\sin^2\omega}{c} \hspace{1cm} x_c \; = \; y_a\sin\omega \;=\; \frac{2Rb\sin^2\omega}{a} Of course, x a : x b : x c x_a\,:\,x_b\,:\,x_c are the absolute triangular coordinates of the point P P .

We can repeat these calculations for the second Brocard point Q Q , where the vertices of A B C ABC are taken in the opposite order to locate the angles ω \omega in slightly different places. We obtain the feet of the perpendiculars G G , H H , I I and lengths p a p_a , p b p_b , p c p_c and q a q_a , q b q_b , q c q_c in an analogous manner to that above, and we obtain that p a = 2 R c sin ω a p b = 2 R a sin ω b p c = 2 R b sin ω c p_a \; = \; \frac{2Rc\sin \omega}{a} \hspace{1cm} p_b \; = \; \frac{2Ra\sin\omega}{b} \hspace{1cm} p_c \; = \; \frac{2Rb\sin\omega}{c} and q a = 2 R b sin 2 ω c q b = 2 R c sin 2 ω a q c = 2 R a sin 2 ω b q_a \; = \; \frac{2Rb\sin^2 \omega}{c} \hspace{1cm} q_b \;=\; \frac{2Rc\sin^2\omega}{a} \hspace{1cm} q_c \;=\; \frac{2Ra\sin^2\omega}{b}


It is easiest to do the later calculations in terms of the sides of the original triangle. We have cos A = b 2 + c 2 a 2 2 b c \cos A = \frac{b^2 + c^2 - a^2}{2bc} and sin A = 2 Δ b c \sin A = \frac{2\Delta}{bc} , where Δ \Delta is the area of the triangle. Thus cot A = b 2 + c 2 a 2 4 Δ \cot A = \frac{b^2 +c^2 - a^2}{4\Delta} , and hence cot ω = a 2 + b 2 + c 2 4 Δ \cot\omega \; = \; \frac{a^2 + b^2 + c^2}{4\Delta} so that sin ω = ( a + b + c ) ( a + b + c ) ( a b + c ) ( a + b c ) 2 a 2 b 2 + a 2 c 2 + b 2 c 2 cos ω = a 2 + b 2 + c 2 2 a 2 b 2 + a 2 c 2 + b 2 c 2 \begin{aligned} \sin\omega & = \; \frac{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}{2\sqrt{a^2b^2 + a^2c^2 + b^2c^2}} \\ \cos\omega & = \; \frac{a^2 + b^2 + c^2}{2\sqrt{a^2b^2 + a^2c^2 + b^2c^2}} \end{aligned}

We note that P Q 2 = ( c y a cos ω p b cos ω ) 2 + ( x c q c ) 2 PQ^2 \; =\; \big(c - y_a\cos\omega - p_b\cos\omega\big)^2 + (x_c - q_c)^2 so that P Q 2 4 R 2 = ( sin C ( a b + b a ) sin ω cos ω ) 2 + ( a b b a ) 2 sin 4 ω = sin 2 ω ( 1 4 sin 2 ω ) \frac{PQ^2}{4R^2} \; = \; \left(\sin C - \big(\tfrac{a}{b} + \tfrac{b}{a}\big)\sin\omega\cos\omega\right)^2 + \left(\tfrac{a}{b} - \tfrac{b}{a}\right)^2\sin^4\omega \; = \; \sin^2\omega(1 - 4\sin^2\omega) after much simplification. Thus P Q = 2 R sin ω 1 4 sin 2 ω PQ = 2R\sin\omega\sqrt{1 - 4\sin^2\omega} .

For any point X X on B C BC , note that P X + Q X = P X + Q X PX + QX = P'X + QX , where P P' is the mirror image of P P in B C BC . It is clear that P X + Q X P Q PX + QX \ge P'Q , and that this least value is achieved when X = X 0 X = X_0 . Now P Q 2 = ( c y a cos ω p b cos ω ) 2 + ( x c + q c ) 2 P'Q^2 \; =\; \big(c - y_a\cos\omega - p_b\cos\omega\big)^2 + (x_c + q_c)^2 so that P Q 2 4 R 2 = ( sin C ( a b + b a ) sin ω cos ω ) 2 + ( a b + b a ) 2 sin 4 ω = sin 2 ω \frac{P'Q^2}{4R^2} \; = \; \left(\sin C - \big(\tfrac{a}{b} + \tfrac{b}{a}\big)\sin\omega\cos\omega\right)^2 + \left(\tfrac{a}{b} + \tfrac{b}{a}\right)^2\sin^4\omega \; = \; \sin^2\omega Thus P Q = 2 R sin ω P'Q = 2R\sin\omega .

The locus of the set of points X X such that P X + Q X = 2 R sin ω PX + QX = 2R\sin\omega is an ellipse E \mathcal{E} . It touches the line B C BC at the point X 0 X_0 only, and hence is tangential to the line B C BC . Similar calculations can be done for the other two sides, and so we deduce that E \mathcal{E} is tangential to all three sides of the triangle, so is the Brocard ellipse desired in this question. Since the points P P , Q Q are the foci of E \mathcal{E} , we see that the Brocard ellipse has semimajor axis A A and eccentricity E E where A = R sin ω A E = R sin ω 1 4 sin 2 ω A \; = \; R\sin\omega \hspace{2cm} AE \; = \; R\sin\omega\sqrt{1 -4\sin^2\omega} and hence the ellipse E \mathcal{E} has eccentricity E = 1 4 sin 2 ω E = \sqrt{1 - 4\sin^2\omega} .


For this particular problem, cot ω = cot π 7 + cot 2 π 7 + cot 4 π 7 = 7 \cot\omega \; = \; \cot\tfrac{\pi}{7} + \cot\tfrac{2\pi}{7} + \cot\tfrac{4\pi}{7} \; = \; \sqrt{7} so that sin ω = 1 2 2 \sin\omega = \tfrac{1}{2\sqrt{2}} , and hence E = 1 4 sin 2 ω = 1 2 E = \sqrt{1 - 4\sin^2\omega} = \boxed{\tfrac{1}{\sqrt{2}}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...