A calculus problem by Shivam Jadhav

Calculus Level 4

If n = 1 n 5 5 n = 35 M W 3 \displaystyle\sum_{n=1}^{\infty}\frac{n^{5}}{5^{n}}=\frac{35M}{W^{3}} with M M and W W are coprime positive integers, then find M W M-W .


The answer is 93.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

For 1 < x < 1 -1< x < 1 , we have:

n = 0 x n = 1 1 x Differentiate both sides n = 1 n x n 1 = 1 ( 1 x ) 2 Multiply both sides by x n = 1 n x n = x ( 1 x ) 2 Differentiate again n = 1 n 2 x n 1 = 1 + x ( 1 x ) 3 × x again n = 1 n 2 x n = x ( 1 + x ) ( 1 x ) 3 Differentiate again n = 1 n 3 x n 1 = 1 + 4 x + x 2 ( 1 x ) 4 × x again n = 1 n 3 x n = x + 4 x 2 + x 3 ( 1 x ) 4 Differentiate again n = 1 n 4 x n 1 = 1 + 11 x + 11 x 2 + x 3 ( 1 x ) 5 × x again n = 1 n 4 x n = x + 11 x 2 + 11 x 3 + x 4 ( 1 x ) 5 Differentiate again n = 1 n 5 x n 1 = 1 + 26 x + 66 x 2 + 26 x 3 + x 4 ( 1 x ) 6 × x again n = 1 n 5 x n = x + 26 x 2 + 66 x 3 + 26 x 4 + x 5 ( 1 x ) 6 Put x = 1 5 n = 1 n 5 5 n = 1 5 + 26 5 2 + 66 5 3 + 26 5 4 + 1 5 5 ( 1 1 5 ) 6 = 3535 512 = 35 101 8 3 \begin{aligned} \sum_{n=0}^\infty x^n & = \frac 1{1-x} & \small {\color{#3D99F6}\text{Differentiate both sides}} \\ \sum_{n=1}^\infty nx^{n-1} & = \frac 1{(1-x)^2} & \small {\color{#3D99F6}\text{Multiply both sides by }x} \\ \sum_{n=1}^\infty nx^n & = \frac x{(1-x)^2} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^2x^{n-1} & = \frac {1+x}{(1-x)^3} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^2x^n & = \frac {x(1+x)}{(1-x)^3} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^3x^{n-1} & = \frac {1+4x+x^2}{(1-x)^4} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^3x^n & = \frac {x+4x^2+x^3}{(1-x)^4} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^4x^{n-1} & = \frac {1+11x+11x^2+x^3}{(1-x)^5} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^4x^n & = \frac {x+11x^2+11x^3+x^4}{(1-x)^5} & \small {\color{#3D99F6}\text{Differentiate again}} \\ \sum_{n=1}^\infty n^5x^{n-1} & = \frac {1+26x+66x^2+26x^3+x^4}{(1-x)^6} & \small {\color{#3D99F6} \times x \text{ again}} \\ \sum_{n=1}^\infty n^5x^n & = \frac {x+26x^2+66x^3+26x^4+x^5}{(1-x)^6} & \small {\color{#3D99F6} \text{Put }x = \frac 15} \\ \sum_{n=1}^\infty \frac {n^5}{5^n} & = \frac {\frac 15 +\frac {26}{5^2}+\frac {66}{5^3}+\frac {26}{5^4}+\frac 1{5^5}}{\left(1-\frac 15\right)^6} \\ & = \frac {3535}{512} \\ & = \frac {35\cdot 101}{8^3} \end{aligned}

M W = 101 8 = 93 \implies M-W = 101-8 = \boxed{93} .


Alternative solution

Akshay Yadav
Sep 18, 2015

The following can be done by using polylogaritms,

P o l y l o g [ 5 , 5 ] = 3535 512 Polylog [-5,5] = \frac{3535}{512}

Hence,

101 8 = 93 101-8 = 93

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...