Expand

Algebra Level 3

( 2 2 + 2 3 5 3 ) 2 + ( 2 3 + 2 5 2 3 ) 2 + ( 2 5 + 2 2 3 3 ) 2 = ? \left( \dfrac { 2\sqrt { 2 } +2\sqrt { 3 } -\sqrt { 5 } }{ 3 } \right) ^{ 2 }+\left( \dfrac { 2\sqrt { 3 } +2\sqrt { 5 } -\sqrt { 2 } }{ 3 } \right) ^{ 2 }+\left( \dfrac { 2\sqrt { 5 } +2\sqrt { 2 } -\sqrt { 3 } }{ 3 } \right) ^{ 2 }= \, ?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Feb 12, 2016

Its evident that we have to apply ( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 a b + 2 b c + 2 c a \color{#20A900}{(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca} to all the three numerators.
One can easily observe that terms in the numerator of the form a 2 a^2 add up while of the form 2 a b 2ab add up to zero. Also we see squares of 2 2 , 2 3 , 2 5 2\sqrt2,2\sqrt3,2\sqrt5 appear twice while squares of 2 , 5 , 3 \sqrt2,\sqrt5,\sqrt3 appear only once. Hence answer is: 2 ( ( 2 2 ) 2 + ( 2 3 ) 2 + ( 2 5 ) 2 ) + ( 2 ) 2 + ( 3 ) 2 + ( 5 ) 2 9 = 10 \dfrac{2((2\sqrt2)^2+(2\sqrt3)^2+(2\sqrt5)^2)+(\sqrt2)^2+(\sqrt3)^2+(\sqrt5)^2}{9} \\\Large=\boxed{\color{#007fff}{10}}

Harish Ghunawat
Feb 16, 2016

Let terms inside brackets be a, b, c respectively. a + b + c = 2 + 3 + 5 a+b+c=\sqrt{2}+\sqrt{3}+\sqrt{5} So a 2 + b 2 + c 2 = 2 + 3 + 5 = 10 a^2+b^2+c^2=2+3+5=10

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...