Expand and Factor Again

Algebra Level 4

For 1 x 1 -1\leq x\leq 1 , find the maximum value of 4 3 x + 16 24 x + 9 x 2 x 3 3 + 4 3 x 16 24 x + 9 x 2 x 3 3 \sqrt[3]{4-3x+\sqrt{16-24x+9x^2-x^3}}+\sqrt[3]{4-3x-\sqrt{16-24x+9x^2-x^3}}


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Shaun Leong
Jun 17, 2016

Surprisingly, it is constant! Let k = 4 3 x + 16 24 x + 9 x 2 x 3 3 + 4 3 x 16 24 x + 9 x 2 x 3 3 k=\sqrt[3]{4-3x+\sqrt{16-24x+9x^2-x^3}}+\sqrt[3]{4-3x-\sqrt{16-24x+9x^2-x^3}} Using ( a + b ) 3 = a 3 + b 3 + 3 ( a + b ) a b (a+b)^3=a^3+b^3+3(a+b)ab , k 3 = 8 6 x + 3 k ( 4 3 x ) 2 ( 16 24 x + 9 x 2 x 3 ) 3 k^3=8-6x+3k\sqrt[3]{(4-3x)^2-(16-24x+9x^2-x^3)} k 3 8 + 6 x 3 k x 3 3 = 0 \Rightarrow k^3-8+6x-3k \sqrt[3]{x^3}=0 k 3 3 x k + 6 x 8 = 0 \Rightarrow k^3-3xk+6x-8=0 ( k 2 ) ( k 2 + 2 k + 4 3 x ) = 0 \Rightarrow (k-2)(k^2+2k+4-3x)=0 k = 2 or 1 ± 3 x 3 \Rightarrow k=2 \mbox{ or } -1 \pm \sqrt{3x-3} Note that 1 ± 3 x 3 -1 \pm \sqrt{3x-3} are extraneous solutions.

Thus k = 2 k=2 for 1 x 1 -1 \leq x \leq1 !

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...