Expand it if you're crazy!

ϕ 2016 ( 1 ϕ ) 2016 5 \large \dfrac{\phi^{2016} - (1-\phi)^{2016} }{\sqrt5}

Let ϕ \phi denote the golden ratio, ϕ = 1 + 5 2 \phi = \dfrac{1+\sqrt5}2 . Find the last two digits of the number above.

Bonus : Generalize this.


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

9 323 902 893 570 627 136 644 909 011 459 667 063 037 397 957 536 688 215 843 526 057 778 435 618 966 529 044 166 840 768 586 599 645 055 109 991 720 254 500 861 681 614 468 311 831 408 982 633 895 593 351 855 853 713 466 639 755 325 128 380 050 408 481 917 343 862 884 648 336 817 184 854 418 754 936 738 364 775 721 691 168 811 849 042 180 346 368 134 222 800 409 349 683 778 536 695 746 018 273 729 245 690 469 419 835 861 812 346 607 836 429 623 920 015 431 945 309 290 084 465 045 541 840 056 121 469 920 259 880 128 488 038 008 338 414 987 472 374 378 112 is the 2016th fibonacci number - ending in 12.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...