Laws Of Thermodynamics \text{Laws Of Thermodynamics}

One mole of an ideal monoatomic gas at temperature T 0 T_0 expands slowly according to the law P V = c o n s t a n t \dfrac{P}{V}=constant . If the final temperature is 2 T 0 2T_0 , heat supplied to the gas is :

1 2 R T 0 \dfrac12 RT_0 3 2 R T 0 \dfrac32 RT_0 R T 0 RT_0 2 R T 0 2RT_0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishu Jaar
Nov 1, 2017

Here ,

C V = 3 R 2 (for ideal monoatomic gas) and : C_V= \dfrac{3R}{2} \text{(for ideal monoatomic gas) and :} P V 1 = c o n s t a n t \large\color{#3D99F6}{PV^{-1}=constant} For the general polytropic process: \text{For the general polytropic process:} P V x = c o n s t a n t \color{#D61F06}{PV^x=constant} We know \text{We know} C = C V + R 1 x \large \color{#69047E}{C=C_V + \dfrac{R}{1-x} } Plugging in x=-1 and the value of : C V , we get \text{Plugging in x=-1 and the value of : } C_V , \text{we get} C = 3 R 2 + R 1 + 1 = 2 R C=\dfrac{3R}{2} + \dfrac{R}{1+1} = \color{#D61F06}{2R} Now heat supplied to the gas is : \text{Now heat supplied to the gas is :} Δ Q = n C T 0 2 T 0 d T = 1 2 R ( 2 T 0 T 0 ) = 2 R T 0 \large \color{#3D99F6}{\Delta Q=nC \int_{T_0}^{2T_0} dT=1\cdot 2R\cdot (2T_0 - T_0)= 2RT_0 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...