n → + ∞ lim ( n 2 + 1 1 + n 2 + 2 2 + n 2 + 3 3 + . . . + n 2 + 6 6 n − 1 6 6 n − 1 + n 2 + 6 6 n 6 6 n )
Evaluate the limit above.
Notice that the 1st element of the sequence is the sum of 66 numbers, the 2nd one of 132 numbers, the 3rd one of 198 numbers and so on.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
n 2 + k = n 2 + o ( n 2 ) and n 2 + a n − b = n 2 + o ( n 2 ) when n → + ∞ ∀ k , a , b ∈ N . Therefore: n → + ∞ lim ( n 2 + 1 1 + n 2 + 2 2 + n 2 + 3 3 + . . . + n 2 + 6 6 n − 1 6 6 n − 1 + n 2 + 6 6 n 6 6 n ) = = n → + ∞ lim ( n 2 + o ( n 2 ) 1 + n 2 + o ( n 2 ) 2 + n 2 + o ( n 2 ) 3 + . . . + n 2 + o ( n 2 ) 6 6 n − 1 + n 2 + o ( n 2 ) 6 6 n ) = = n → + ∞ lim n 2 + o ( n 2 ) 1 + 2 + 3 + . . . + 6 6 n = = n → + ∞ lim n 2 + o ( n 2 ) 2 6 6 n ( 6 6 n + 1 ) = = n → + ∞ lim 2 n 2 + o ( n 2 ) 6 6 2 n 2 + 6 6 n = = n → + ∞ lim 2 n 2 + o ( n 2 ) 6 6 2 n 2 + o ( n 2 ) = = n → + ∞ lim 2 n 2 6 6 2 n 2 = 2 6 6 2 = 2 1 7 8