Expect a factorial

Calculus Level 5

Define f n ( x ) f_n (x) as a least-degree polynomial that passes through the coordinates ( x , y ) = ( 0 , 0 ! ) , ( 1 , 1 ! ) , ( 2 , 2 ! ) , , ( n , n ! ) (x,y) = (0,0!), (1,1!) , (2,2!) , \ldots , (n,n!) Define the expected function, n ! e n!^e to be equal to f n 1 ( n ) . f_{n-1} (n). Find lim n n ! n ! e n ! \lim_{n\to\infty} \dfrac{n! - n!^e}{n!}


Inspiration


The answer is 0.367879.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

John Ross
Jun 21, 2018

Lagrangian interpolation tells us that f n ( x ) = j = 0 n j ! 0 k n k j x k j k = j = 0 n j ! ( 1 ) n j j ! ( n j ) ! 0 k n k j ( x k ) = j = 0 n ( 1 ) n j ( n j ) ! 0 k n k j ( x k ) \begin{aligned} f_n(x) & = \; \sum_{j=0}^n j! \prod_{{0 \le k \le n} \atop {k \neq j}} \frac{x-k}{j-k} \; = \; \sum_{j=0}^n \frac{j!}{(-1)^{n-j} j!(n-j)!}\prod_{{0 \le k \le n} \atop {k \neq j}} (x-k) =\sum_{j=0}^n \frac{(-1)^{n-j}}{(n-j)!} \prod_{{0 \le k \le n} \atop {k \neq j}}(x-k) \end{aligned} By the Taylor series for e x e^x , the leading coefficient, a n a_n of f n ( x ) f_n(x) approaches 1 e \frac 1e for large n n . f n ( x ) f n 1 ( x ) f_{n}(x) - f_{n-1}(x) is a degree n n polynomial with roots at x = 0 , 1 , 2 , . . . , n 1 x=0,1,2,...,n-1 , so f n ( x ) f n 1 ( x ) = a n x ( x 1 ) ( x 2 ) ( x ( n 1 ) ) f_{n}(x) - f_{n-1}(x) = a_nx(x-1)(x-2)\cdots (x-(n-1)) . Setting x = n x=n gives us the numerator of the desired limit, so we have lim n n ! n ! e n ! = lim n a n n ! n ! = 1 e \lim_{n\to\infty} \dfrac{n! - n!^e}{n!}=\lim_{n\to\infty} \dfrac{ a_nn!}{n!}=\frac 1e

Incidentally, n ! n ! e n! - n!^e happens to be equal to the derangement function , ! n !n .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...