Expected Area of 4 Lines

Geometry Level 5

A B C D ABCD is a unit square.Let point E E be a random point on A B \overline{AB} , F F be a random point on B C \overline{BC} , G G be a random point on C D \overline{CD} , H H be a random point on D A \overline{DA} .

Connect C E , D F , A G , B H \overline{CE},\overline{DF},\overline{AG},\overline{BH} ,and the 4 line segments intersects at points P , Q , R , S P,Q,R,S .

Find the expect area of the quadrilateral P Q R S PQRS .

Bonus: Find the expect perimeter of the quadrilateral P Q R S PQRS .


The answer is 0.2274.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nicola Mignoni
Nov 4, 2018

Let's place the square in the x y xy -plane and let be

A ( 0 , 0 ) A(0,0) , B ( 1 , 0 ) B(1,0) , C ( 1 , 1 ) C(1,1) , D ( 0 , 1 ) D(0,1) .

Let's also define

E ( x e , 0 ) E(x_e,0) , F ( 1 , y f ) F(1,y_f) , G ( x g , 1 ) G(x_g,1) , H ( 0 , y h ) H(0,y_h)

and

P 1 ( x 1 , y 1 ) P_1(x_1,y_1) , P 2 ( x 2 , y 2 ) P_2(x_2,y_2) , P 3 ( x 3 , y 3 ) P_3(x_3,y_3) , P 4 ( x 4 , y 4 ) P_4(x_4,y_4) .

The area of the region we're interested in, A ( P 1 P 2 P 3 P 4 ) \textbf{A}(P_1P_2P_3P_4) , can be written as

A ( P 1 P 2 P 3 P 4 ) = A ( A B C D ) s S A ( s ) + t T A ( t ) \textbf{A}(P_1P_2P_3P_4)=\textbf{A}(ABCD)-\sum_{s \in S}\textbf{A}(s)+\sum_{t \in T} \textbf{A}(t)

where S = { A B H , B C E , C D F , A D G } S=\{ABH, BCE, CDF, ADG\} and T = { B P 2 E , F P 3 C , D P 4 G , A P 1 H } T=\{BP_2E, FP_3C, DP_4G, AP_1H\} .

In other words, the area of the central quadrilateral is the area of the entire square ( A ( A B C D ) \textbf{A}(ABCD) ) from which we remove the area of big triangles adjactent to the sides ( s S A ( s ) \sum_{s \in S}\textbf{A}(s) ). But, doing so, we remove the area of the smaller cornered triangles ( t T A ( t ) \sum_{t \in T} \textbf{A}(t) ) twice, so we need to add them.

The expected area of A ( P 1 P 2 P 3 P 4 ) \textbf{A}(P_1P_2P_3P_4) is

E [ A ( P 1 P 2 P 3 P 4 ) ] = E [ A ( A B C D ) s S A ( s ) + t T A ( t ) ] = A ( A B C D ) E [ s S A ( s ) ] + E [ t T A ( t ) ] \mathbb{E}[\textbf{A}(P_1P_2P_3P_4)]=\mathbb{E}\big[\textbf{A}(ABCD)-\sum_{s \in S}\textbf{A}(s)+\sum_{t \in T} \textbf{A}(t) \big]=\textbf{A}(ABCD)-\mathbb{E}\big[\sum_{s \in S}\textbf{A}(s) \big]+\mathbb{E}\big[\sum_{t \in T}\textbf{A}(t) \big] .

Notice that

E [ A ( A B H ) ] = E [ A ( B C E ) ] = E [ A ( C D F ) ] = E [ A ( A D G ) ] \mathbb{E}[\textbf{A}(ABH)]=\mathbb{E}[\textbf{A}(BCE)]=\mathbb{E}[\textbf{A}(CDF)]=\mathbb{E}[\textbf{A}(ADG)]

and

E [ A ( B P 2 E ) ] = E [ A ( F P 3 C ) ] = E [ A ( D P 4 G ) ] = E [ A ( A P 1 H ) ] \mathbb{E}[\textbf{A}(BP_2E)]=\mathbb{E}[\textbf{A}(FP_3C)]=\mathbb{E}[\textbf{A}(DP_4G)]=\mathbb{E}[\textbf{A}(AP_1H)]

due to the symmetry of the problem, i.e. each triangle in T T can be obtained from the first one by rotating the square. The same holds for S S . For the sake of brevity we'll evaluate E [ A ( A B H ) ] \mathbb{E}[\textbf{A}(ABH)] and E [ A ( B P 2 E ) ] \mathbb{E}[\textbf{A}(BP_2E)] , that is

E [ A ( A B H ) ] = E ( x h 2 ) = 0 1 x h 2 d x h = 1 4 \displaystyle \mathbb{E}[\textbf{A}(ABH)]=\mathbb{E}\bigg(\frac{x_h}{2}\bigg)= \int_{0}^{1} \frac{x_h}{2} dx_h=\frac{1}{4}

and

E [ A ( B P 2 E ) ] = E ( 1 2 ( x e 1 ) x h ( ( x e 1 ) x h 1 ) ( 1 x e ) ) ( 1 ) = 1 2 0 1 0 1 ( x e 1 ) x h ( ( x e 1 ) x h 1 ) ( 1 x e ) d x e d x h = 3 4 ln 2 \displaystyle \mathbb{E}[\textbf{A}(BP_2E)]=\mathbb{E}\bigg( \frac{1}{2} \frac{(x_e-1)x_h}{((x_e-1)x_h-1)}(1-x_e)\bigg)^{(1)}=\frac{1}{2} \int_{0}^{1} \int_{0}^{1} \frac{(x_e-1)x_h}{((x_e-1)x_h-1)}(1-x_e) dx_edx_h =\frac{3}{4}-\ln{2}

Eventually, being A ( A B C D ) = 1 \textbf{A}(ABCD)=1 , we have

E [ A ( P 1 P 2 P 3 P 4 ) ] = 1 4 1 4 + 4 ( 3 4 ln 2 ) = 3 ln 2 0.2274 \displaystyle \mathbb{E}[\textbf{A}(P_1P_2P_3P_4)]=1-4 \cdot \frac{1}{4} + 4 \cdot \bigg(\frac{3}{4}-\ln{2}\bigg) = 3-\ln{2} \approx \boxed{0.2274}


( 1 ) ^{(1)} : The area for B P 2 E BP_2E has been obtained intersecting H B HB and E C EC , in order to find y 2 y_2 (the height), and multiplying it by E B = 1 x e EB=1-x_e (the base) divided by 2 2

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...