Exploit the Symmetry

Calculus Level 3

Compute the improper integral

0 2 ( 4 x x x 4 x ) d x \large\ \int _{ 0 }^{ 2 }{ \left( \sqrt { \frac { 4 - x }{ x } } - \sqrt { \frac { x }{ 4 - x } } \right) dx }


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

I = 0 2 ( 4 x x x 4 x ) d x Using identity: a b f ( x ) d x = a b f ( a + b x ) d x = 0 2 ( 2 + x 2 x 2 x 2 + x ) d x = 0 2 2 x 4 x 2 d x = 2 4 x 2 2 0 = 4 \begin{aligned} I & = \int_0^2 \left(\sqrt{\frac {4-x}x} - \sqrt{\frac x{4-x}}\right) dx & \small \color{#3D99F6} \text{Using identity: }\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx \\ & = \int_0^2 \left(\sqrt{\frac {2+x}{2-x}} - \sqrt{\frac {2-x}{2+x}}\right) dx \\ & = \int_0^2 \frac {2x}{\sqrt{4-x^2}} dx \\ & = 2\sqrt{4-x^2} \ \bigg|_2^0 \\ & = \boxed{4} \end{aligned}

@Chew-Seong Cheong , sir please try this one and post the solution if possible.

Punishment number 2018! by me.

Priyanshu Mishra - 3 years, 4 months ago
Bernard Peh
Feb 3, 2018

Evaluated with the help of inverse functions

The inverse functions of 4 x x \displaystyle \sqrt{\frac{4-x}{x}} and x 4 x \displaystyle\sqrt{\frac{x}{4-x}} are 4 x 2 + 1 \displaystyle\frac{4}{x^2+1} and 4 x 2 x 2 + 1 \displaystyle\frac{4x^2}{x^2+1} ,respectively.

Using Integral of Inverse functions formula: a b f ( x ) d x + f ( a ) f ( b ) f 1 ( x ) d x = b f ( b ) a f ( a ) \int_{a}^{b}f(x)\text{d}x+\int_{f(a)}^{f(b)}f^{-1}(x)\text{d}x=bf(b)-af(a) a b f ( x ) d x = b f ( b ) a f ( a ) f ( a ) f ( b ) f 1 ( x ) d x ( 1 ) \int_{a}^{b}f(x)\text{d}x=bf(b)-af(a)-\int_{f(a)}^{f(b)}f^{-1}(x)\text{d}x ~~~ \cdot\cdot\cdot\cdot\cdot\cdot\cdot~(1)

Returning into our problem: 0 2 ( 4 x x x 4 x ) d x \large\ \int _{ 0 }^{ 2 }{ \left( \sqrt { \frac { 4 - x }{ x } } - \sqrt { \frac { x }{ 4 - x } } \right) \text{d}x } Split them up into two integrals: 0 2 4 x x d x 0 2 x 4 x d x \large\ \int _{ 0 }^{ 2 }{ \sqrt { \frac { 4 - x }{ x } }\text{d}x - \int_{0}^{2}\sqrt { \frac { x }{ 4 - x } } \text{d}x }

Apply the inverse functions formula (1) into the equation (Notice there's a 0 0\cdot\infty situation so a limit must be considered.) : ( 2 ( 1 ) lim x 0 x 4 x x 1 4 x 2 + 1 d x ) ( 2 ( 1 ) 0 ( 0 ) 0 1 4 x 2 x 2 + 1 ) \left(\ 2(1) - \lim_{x\rightarrow 0}x\cdot\sqrt{\frac{4-x}{x}} - \int_{\infty}^{1}\frac{4}{x^2+1}\text{d}x \right) - \left( 2(1)-0(0) - \int_{0}^{1}\frac{4x^2}{x^2+1} \right) 2 ( π ) ( 2 [ 4 π ] ) 2 - (-\pi) - ( 2 - [4 - \pi] ) 4 \boxed{4}

Priyanshu Mishra
Feb 3, 2018

First of all, we note the many symmetries of the given expression. Specifically, we have 4 x x \sqrt { \frac { 4 - x }{ x } } and we subtract its reciprocal. We also recall that square roots, when we take their derivative, give us their reciprocal. This inspires the guess that the function f ( x ) = x 4 x f\left( x \right) = \sqrt { x } \sqrt { 4 - x } . Indeed, we find that f ( x ) = ( 4 x x x 4 x ) f^{ ' }\left( x \right) = \left( \sqrt { \frac { 4 - x }{ x } } - \sqrt { \frac { x }{ 4 - x } } \right) so that 0 2 ( 4 x x x 4 x ) = 4 d x \int _{ 0 }^{ 2 }{ \left( \sqrt { \frac { 4 - x }{ x } } - \sqrt { \frac { x }{ 4 - x } } \right) } = 4 dx .

Indeed a very nice solution Priyanshu!!

Devang Patil - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...