Exploring a Triangle - Medians, Altitudes and Angle Bisectors!

Geometry Level 5

Let m a , h a , w a m_a, h_a, w_a denote the lengths of the median, the altitude and the internal angle bisector, respectively, to side A A in a Δ A B C \Delta ABC . Define m b , m c , h b , h c , w b , w c m_b, m_c, h_b, h_c, w_b, w_c similarly. Let R R be the circumradius of Δ A B C \Delta ABC . Let:

  • η 1 = max ( 1 R c y c l i c b 2 + c 2 m a ) \eta_1 = \max \left( \displaystyle \dfrac{1}{R} \sum_{cyclic} \dfrac{b^2+c^2}{m_a} \right)

  • η 2 = min ( 1 R c y c l i c b 2 + c 2 h a ) \eta_2 = \min \left( \displaystyle \dfrac{1}{R} \sum_{cyclic} \dfrac{b^2+c^2}{h_a} \right)

  • η 3 = min ( 1 R c y c l i c b 2 + c 2 w a ) \eta_3 = \min \left( \displaystyle \dfrac{1}{R} \sum_{cyclic} \dfrac{b^2+c^2}{w_a} \right)

Find the value of η 1 + η 2 + η 3 \large{ \left \lfloor \eta_1 + \eta_2 + \eta_3 \right \rfloor} .


The answer is 28.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

0 solutions

No explanations have been posted yet. Check back later!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...