Exploring Divisor Function 1

n = 1 d ( 2017 n ) n 2 = A π B C \sum _{n=1}^{\infty}\frac{d\left(2017n\right)}{n^2}=\frac{A\pi^B}{C}

Where d ( n ) d(n) counts the number of divisors of n n . Find A + B + C A+B+C


Hint: 2017 is prime

This problem is part of the set Exploring the divisor function


The answer is 154594985.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Mar 25, 2016

Let N = p 1 a 1 p 2 a 2 p m a m N = p_1^{a_1} p_2^{a_2} \cdots p_m^{a_m} be the prime factorization of N N , and let A ( N ) = { n N ( n , N ) = 1 } A(N) \; = \; \big\{ n \in \mathbb{N} \, \big| \, (n,N) = 1 \big\} be the collection of positive integers which are coprime to N N . Then n 1 d ( N n ) n 2 = b 1 0 b 2 0 b m 0 n A ( N ) d ( p 1 b 1 + a 1 p 2 b 2 + a 2 p m b m + a m n ) p 1 2 b 1 p 2 2 b 2 p m 2 b m n 2 = b 1 0 b 1 + a 1 + 1 p 1 2 b 1 b 2 0 b 2 + a 2 + 1 p 2 2 b 2 b m 0 b m + a m + 1 p m 2 b m n A ( N ) d ( n ) n 2 = ( j = 1 m f a j + 1 ( p j 2 ) ) n A ( N ) d ( n ) n 2 \begin{array}{rcl} \displaystyle \sum_{n \ge 1} \frac{d(Nn)}{n^2} & = & \displaystyle \sum_{b_1 \ge 0} \sum_{b_2 \ge 0} \cdots \sum_{b_m \ge 0} \sum_{n \in A(N)} \frac{d\big(p_1^{b_1+a_1}p_2^{b_2+a_2} \cdots p_m^{b_m+a_m} n\big)}{p_1^{2b_1} p_2^{2b_2} \cdots p_m^{2b_m} n^2} \\ & = & \displaystyle \sum_{b_1 \ge 0} \frac{b_1+a_1+1}{p_1^{2b_1}} \sum_{b_2 \ge 0}\frac{b_2+a_2+1}{p_2^{2b_2}} \cdots \sum_{b_m \ge 0} \frac{b_m + a_m + 1}{p_m^{2b_m}} \sum_{n \in A(N)} \frac{d(n)}{n^2} \\ & = & \displaystyle\left(\prod_{j=1}^m f_{a_j + 1}\big(p_j^{-2}\big) \right) \sum_{n \in A(N)} \frac{d(n)}{n^2} \end{array} where f k ( x ) = j 0 ( j + k ) x j = ( k ( k 1 ) x ) ( 1 x ) 2 x < 1 . f_k(x) \; = \; \sum_{j \ge 0} (j+k)x^j \; = \; \big(k - (k-1)x\big)(1-x)^{-2} \qquad \qquad |x| < 1 \;. A similar calculation shows us that ζ ( 2 ) 2 = n g e 1 d ( n ) n 2 = ( j = 1 m f 1 ( p j 2 ) ) n A ( N ) d ( n ) n 2 \zeta(2)^2 \; = \; \sum_{n\ ge 1} \frac{d(n)}{n^2} \; = \; \left(\prod_{j=1}^m f_1\big(p_j^{-2}\big) \right) \sum_{n \in A(N)} \frac{d(n)}{n^2} and hence that n 1 d ( N n ) n 2 = j = 1 m f a j + 1 ( p j 2 ) f 1 ( p j 2 ) ζ ( 2 ) 2 = 1 36 π 4 j = 1 m ( a j + 1 a j p j 2 ) \sum_{n \ge 1} \frac{d(Nn)}{n^2} \; = \; \prod_{j=1}^m \frac{f_{a_j+1}(p_j^{-2})}{f_1(p_j^{-2})} \zeta(2)^2 \; = \; \tfrac{1}{36} \pi^4 \prod_{j=1}^m \big(a_j + 1 - a_jp_j^{-2}\big) With N = 2017 N = 2017 , the sum is equal to 1 36 π 4 ( 2 1 201 7 2 ) = 8136577 146458404 π 4 , \tfrac{1}{36}\pi^4\big(2 - \tfrac{1}{2017^2}\big) \; = \; \tfrac{8136577}{146458404}\pi^4 \;, making the answer 154594985 \boxed{154594985} .

Julian Poon
Feb 26, 2016

Recall that if f f is a completely multiplicative function, f f = f d ( n ) f*f=fd(n)

Let F ( n ) = { 0 if n is a multiple of prime p 1 otherwise F(n)=\begin{cases}0 \text{ if } n \text{ is a multiple of prime }p\\1 \text{ otherwise}\end{cases}

Notice that F F is completely multiplicative. Hence, through Dirichlet Convolution,

[ n = 1 F ( n ) n s ] 2 = n = 1 d ( n ) F ( n ) n s = n = 1 d ( n ) n s n = 1 d ( p n ) ( p n ) s \left[\sum_{n=1}^{\infty} \frac{F(n)}{n^s}\right]^{2}=\sum_{n=1}^{\infty} \frac{d(n)F(n)}{n^s}=\sum_{n=1}^{\infty} \frac{d(n)}{n^s}-\sum_{n=1}^{\infty} \frac{d(pn)}{(pn)^s}

n = 1 F ( n ) n s = n = 1 1 n s n = 1 1 ( p n ) s = ( 1 1 p s ) ζ ( s ) \sum_{n=1}^{\infty} \frac{F(n)}{n^s}=\sum_{n=1}^{\infty} \frac{1}{n^s}-\sum_{n=1}^{\infty} \frac{1}{(pn)^s}=\left(1-\frac{1}{p^s}\right)\zeta(s)

Using the fact that 1 1 = d 1*1=d and hence n = 1 d ( n ) n s = ζ ( s ) 2 \sum_{n=1}^{\infty} \frac{d(n)}{n^s}=\zeta(s)^2

n = 1 d ( p n ) ( p n ) s = ζ ( s ) 2 ( 1 1 p s ) 2 ζ ( s ) 2 = ζ ( s ) 2 ( 1 ( 1 1 p s ) 2 ) \sum_{n=1}^{\infty} \frac{d(pn)}{(pn)^s}=\zeta(s)^2-\left(1-\frac{1}{p^s}\right)^2\zeta(s)^2=\zeta(s)^2\left(1-\left(1-\frac{1}{p^s}\right)^2\right)

Substituting p = 2017 p=2017 and s = 2 s=2 gives

n = 1 d ( 2017 n ) n 2 = 201 7 2 ζ ( 2 ) 2 ( 1 ( 1 1 201 7 2 ) 2 ) = 8136577 π 4 146458404 \sum_{n=1}^{\infty} \frac{d(2017n)}{n^2}=2017^2\zeta(2)^2\left(1-\left(1-\frac{1}{2017^2}\right)^2\right)=\boxed{\frac{8136577\pi ^4}{146458404}}

Moderator note:

Great explanation! The Dirichlet convolution is useful for manipulating multiplicative functions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...