Exploring Divisor Function 3

n = 1 d ( 2048 n ) n 2 = A π B C \sum _{n=1}^{\infty}\frac{d\left(2048n\right)}{n^2}=\frac{A\pi^B}{C}

Where d ( n ) d(n) counts the number of divisors of n n . Find A + B + C A+B+C


Hint: 2048 is 2 to the power of 11. 2 is a prime.

This problem is part of the set Exploring the divisor function


The answer is 185.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Mar 25, 2016

In the first of this series, I showed that n 1 d ( N n ) n 2 = 1 36 π 4 j = 1 m ( a j + 1 a j p j 2 ) \sum_{n \ge 1} \frac{d(Nn)}{n^2} \; = \; \tfrac{1}{36} \pi^4 \prod_{j=1}^m \big(a_j + 1 - a_jp_j^{-2}\big) where N = p 1 a 1 p 2 a 2 p m a m N = p_1^{a_1} p_2^{a_2} \cdots p_m^{a_m} is the prime factorization of N N . With N = 2048 = 2 11 N = 2048 = 2^{11} , the sum is equal to 1 36 π 4 ( 12 11 4 ) = 37 144 π 4 , \tfrac{1}{36}\pi^4\big(12 - \tfrac{11}{4}\big) \; = \; \tfrac{37}{144}\pi^4 \;, making the answer 185 \boxed{185} .

Julian Poon
Mar 19, 2016

When it comes to evaluating for when k = p a k=p^a , where p is a prime, a problem arises, since

F ( n ) = { 0 if n is a multiple of p a 1 otherwise F(n)=\begin{cases}0 \text{ if } n \text{ is a multiple of }p^a\\1 \text{ otherwise}\end{cases}

Isn't completely multiplicative, so we can't use the same method as what we did in part 1.

However, we can split the sum up and then sum them all together.

n = 1 d ( p a n ) ( p a n ) s = n = 1 d ( p n ) ( p n ) s m = 1 a 1 n coprime to p d ( p m n ) ( p m n ) s \displaystyle \sum _{n=1}^{\infty}\frac{d\left(p^an\right)}{(p^a n)^s}=\sum _{n=1}^{\infty}\frac{d\left(pn\right)}{(pn)^s}-\sum _{m=1}^{a-1}\sum _{n \text{ coprime to }p}\frac{d\left(p^mn\right)}{(p^m n)^s}

Since d ( n ) d(n) is multiplicative, in other words, if a and b are coprime integers, d ( a ) × d ( b ) = d ( a b ) d(a)\times d(b)=d(ab)

m = 1 a 1 n coprime to p d ( p m n ) ( p m n ) s = m = 1 a 1 d ( p m ) p m s n coprime to p d ( n ) n s = m = 1 a 1 m + 1 p m s n coprime to p d ( n ) n s \displaystyle \sum _{m=1}^{a-1}\sum _{n \text{ coprime to }p}\frac{d\left(p^mn\right)}{(p^m n)^s}=\sum _{m=1}^{a-1}\frac{d\left(p^m\right)}{p^{ms}}\sum _{n \text{ coprime to }p}\frac{d\left(n\right)}{n^s}=\sum _{m=1}^{a-1}\frac{m+1}{p^{ms}}\sum _{n \text{ coprime to }p}\frac{d\left(n\right)}{n^s}

Since through part 1,

n = 1 d ( p n ) ( p n ) s = n = 1 d ( n ) n s n coprime to p d ( n ) n s = ζ ( s ) 2 ( 1 1 p s ) 2 ζ ( s ) 2 = ζ ( s ) 2 ( 1 ( 1 1 p s ) 2 ) \displaystyle \sum _{n=1}^{\infty}\frac{d\left(pn\right)}{\left(pn\right)^s}=\sum _{n=1}^{\infty}\frac{d\left(n\right)}{n^s}-\sum _{n \text{ coprime to }p}\frac{d\left(n\right)}{n^s}=\zeta(s)^2-\left(1-\frac{1}{p^s}\right)^2\zeta(s)^2=\zeta(s)^2\left(1-\left(1-\frac{1}{p^s}\right)^2\right)

And that

m = 1 a 1 m + 1 p m s = 2 p s ( a + 1 ) p a s a p 2 s + a p s p 2 s p a s ( p s 1 ) 2 \displaystyle \sum _{m=1}^{a-1}\frac{m+1}{p^{ms}}=\frac{2p^{s(a+1)}-p^{as}-ap^{2s}+ap^s-p^{2s}}{p^{as}\left(p^s-1\right)^2}

Putting it all together,

n = 1 d ( p a n ) ( p a n ) s = n = 1 d ( p n ) ( p n ) s m = 1 a 1 n coprime to p d ( p m n ) ( p m n ) s \displaystyle \sum _{n=1}^{\infty}\frac{d\left(p^an\right)}{(p^a n)^s}=\sum _{n=1}^{\infty}\frac{d\left(pn\right)}{(pn)^s}-\sum _{m=1}^{a-1}\sum _{n \text{ coprime to }p}\frac{d\left(p^mn\right)}{(p^m n)^s}

= ζ ( s ) 2 ( 1 ( 1 1 p s ) 2 ) 2 p s ( a + 1 ) p a s a p 2 s + a p s p 2 s p a s ( p s 1 ) 2 ( 1 1 p s ) 2 ζ ( s ) 2 \displaystyle =\zeta(s)^2\left(1-\left(1-\frac{1}{p^s}\right)^2\right)-\frac{2p^{s(a+1)}-p^{as}-ap^{2s}+ap^s-p^{2s}}{p^{as}\left(p^s-1\right)^2}\left(1-\frac{1}{p^s}\right)^2\zeta(s)^2

Hence

n = 1 d ( p a n ) n s = p s a ( ζ ( s ) 2 ( 1 ( 1 1 p s ) 2 ) 2 p s ( a + 1 ) p a s a p 2 s + a p s p 2 s p a s ( p s 1 ) 2 ( 1 1 p s ) 2 ζ ( s ) 2 ) \displaystyle \sum _{n=1}^{\infty}\frac{d\left(p^an\right)}{ n^s}=p^{sa}\left(\zeta(s)^2\left(1-\left(1-\frac{1}{p^s}\right)^2\right)-\frac{2p^{s(a+1)}-p^{as}-ap^{2s}+ap^s-p^{2s}}{p^{as}\left(p^s-1\right)^2}\left(1-\frac{1}{p^s}\right)^2\zeta(s)^2\right)

Simplifying gives

ζ ( s ) 2 ( a + 1 a p s ) \zeta(s)^2\left(a+1-ap^{-s}\right)

Substituting p=2, s=2, a=11, gives

n = 1 d ( 2048 n ) n 2 = ( π 2 6 ) 2 ( 12 11 2 2 ) = 37 π 4 144 \displaystyle \sum _{n=1}^{\infty}\frac{d\left(2048n\right)}{n^2}=\left(\frac{\pi ^2}{6}\right)^2\left(12-11\cdot 2^{-2}\right)=\boxed{\frac{37\pi ^4}{144}}

Due to how well the final equation collapsed, I'm pretty sure there is a much better solution out there.

Moderator note:

Check out Mark Henning's answer for a more natural approach to account for the constant 2048.

Thanks! +1!

Joel Yip - 5 years, 2 months ago

In my case k = 4 k=4 so thanks!

Joel Yip - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...