Exploring Divisor Function 4

n = 1 d ( 2016 n ) n 2 = A π B C \sum _{n=1}^{\infty}\frac{d\left(2016n\right)}{n^2}=\frac{A\pi^B}{C}

Where d ( n ) d(n) counts the number of divisors of n n . Find A + B + C A+B+C


Hint: Prime factorise 2016

This problem is part of the set Exploring the divisor function


The answer is 109583.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jatin Yadav
May 16, 2016

Here is another proof of the Mark's result

( a , b ) (a,b) denotes gcd ( a , b ) \text{gcd}(a,b)

Say F ( k ) = n = 1 d ( k n ) n 2 F(k) = \displaystyle \sum_{n = 1}^{\infty} \dfrac{d(kn)}{n^2}

F ( k ) = m = 1 n : m ( k n ) 1 n 2 F(k) = \displaystyle \sum_{m=1}^{\infty} \sum_{n:m|(kn)} \dfrac{1}{n^2}

= m = 1 m ( m , k ) n 1 n 2 = \displaystyle \sum_{m=1}^{\infty} \sum_{\frac{m}{(m,k)} | n} \dfrac{1}{n^2}

= π 2 6 m = 1 ( m , k ) 2 m 2 =\displaystyle \dfrac{\pi^2}{6} \sum_{m = 1}^{\infty} \dfrac{(m,k)^2}{m^2}

= π 2 6 g k m : ( m , k ) = g g 2 m 2 = \displaystyle \dfrac{\pi^2}{6} \sum_{g|k} \sum_{m:(m,k)=g} \dfrac{g^2}{m^2}

= π 2 6 g k z : ( z , k g ) = 1 g 2 g 2 z 2 = \displaystyle \dfrac{\pi^2}{6} \sum_{g|k} \sum_{z:(z,\frac{k}{g})=1} \dfrac{g^2}{g^2 z^2}

Now, using inclusion-exclusion,

( m , n ) = 1 1 n 2 = π 2 6 l m μ ( l ) l 2 \displaystyle \sum_{(m,n) = 1} \dfrac{1}{n^2} = \dfrac{\pi^2}{6} \sum_{l|m} \dfrac{\mu(l)}{l^2}

So, F ( k ) = π 4 36 g k l k g μ ( g ) g 2 F(k) = \displaystyle \dfrac{\pi^4}{36} \sum_{g|k} \sum_{l|\frac{k}{g}} \dfrac{\mu(g)}{g^2}

F ( k ) = π 4 36 g k μ ( g ) g 2 d ( k g ) \implies F(k) = \dfrac{\pi^4}{36} \displaystyle \sum_{g|k} \dfrac{\mu(g)}{g^2} d \left(\frac{k}{g} \right)

Let k = i = 1 m p i a i k = \displaystyle \prod_{i = 1}^{m} {p_i}^{a_i}

Then expanding the sum, we have:

F ( k ) = π 4 36 ( ( a 1 + 1 ) ( a 2 + 1 ) ( a m + 1 ) ) ( 1 i = 1 m a i ( a i + 1 ) p i 2 + 1 < = i < j < = m a i ( a i + 1 ) p i 2 a j ( a j + 1 ) p j 2 ) F(k) = \displaystyle \dfrac{\pi^4}{36} \left((a_1+1)(a_2+1) \dots (a_m+1)\right) \left ( 1 - \sum_{i=1}^{m} \dfrac{a_i}{(a_i+1)p_i^2} + \sum_{1<=i<j<=m}\dfrac{a_i}{(a_i+1)p_i^2}\dfrac{a_j}{(a_j+1)p_j^2} \dots \right)

= π 4 36 i = 1 m ( a i + 1 a i p i 2 ) = \displaystyle \dfrac{\pi^4}{36} \prod_{i=1}^{m}(a_i +1 -a_i{ p_i}^{-2})

Mark Hennings
Mar 25, 2016

In the first of this series, I showed that n 1 d ( N n ) n 2 = 1 36 π 4 j = 1 m ( a j + 1 a j p j 2 ) \sum_{n \ge 1} \frac{d(Nn)}{n^2} \; = \; \tfrac{1}{36} \pi^4 \prod_{j=1}^m \big(a_j + 1 - a_jp_j^{-2}\big) where N = p 1 a 1 p 2 a 2 p m a m N = p_1^{a_1} p_2^{a_2} \cdots p_m^{a_m} is the prime factorization of N N . With N = 2016 = 2 5 × 3 2 × 7 N = 2016 = 2^5\times3^2\times7 , the sum is equal to 1 36 π 4 ( 6 5 4 ) ( 3 2 9 ) ( 2 1 49 ) = 46075 63504 π 4 , \tfrac{1}{36}\pi^4\big(6 - \tfrac{5}{4}\big)\big(3 - \tfrac{2}{9}\big)\big(2 - \tfrac{1}{49}\big) \; = \; \tfrac{46075}{63504}\pi^4 \;, making the answer 109583 \boxed{109583} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...