Expocubic

Calculus Level 3

0 x 3 e x d x = ? \large \int _{ 0 }^{ \infty }{ { x }^{ 3 }{ e }^{ -x } } \, dx = \ ?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Isaac Buckley
Jan 21, 2016

The obvious way is to use the gamma function or by integrating by parts. For the sake of variety I will use a fancier method.

I ( a ) = e a x x 3 d x = 3 a 3 e a x d x = 3 a 3 e a x a = e a x ( a 3 x 3 3 a 2 x 2 + 6 a x 6 ) a 4 I(a)=\int e^{ax}x^3 dx =\frac{\partial^3}{\partial a^3} \int e^{ax} dx=\frac{\partial^3}{\partial a^3} \frac{e^{ax}}{a}=\frac{e^{ax}(a^3x^3-3a^2x^2+6ax-6)}{a^4} Now let a = 1 a=-1 and plugging in the limits we get 6 \boxed{6} .

Thanks for the solution. I have learned something new.

Chew-Seong Cheong - 5 years, 4 months ago

Log in to reply

No problem! It's really useful sometimes, it's almost magical. I hope it comes in use.

Isaac Buckley - 5 years, 4 months ago
Chew-Seong Cheong
Jan 20, 2016

0 e x x 3 d x = 0 x 4 1 e x d x = Γ ( 4 ) Γ ( z ) is Gamma function = 3 ! = 6 \begin{aligned} \int_0^\infty e^{-x}x^3 \space dx & = \int_0^\infty x^{4-1}e^{-x} \space dx \\ & = \Gamma(4) \quad \quad \small \color{#3D99F6}{\Gamma(z) \text{ is Gamma function} } \\ & = 3! = \boxed{6} \end{aligned}

can you generalize it for

e x x n d x \int { { e }^{ -x }{ x }^{ n }dx } ?

Hamza A - 5 years, 4 months ago

Log in to reply

Γ ( n + 1 ) \Gamma(n+1)

Aareyan Manzoor - 5 years, 4 months ago

Log in to reply

right answer (:

Hamza A - 5 years, 4 months ago

Easy and cute problem :)

Nihar Mahajan - 5 years, 4 months ago

Log in to reply

Thanks :) ,gamma is cool :D

Hamza A - 5 years, 4 months ago

Integrating by parts: Γ ( z ) = 0 e x x z 1 d x \Gamma(z) = \int_{0}^\infty e^{-x}\cdot x^{z-1} dx Γ ( 4 ) = 0 e x x 4 1 d x = 0 e x x 3 d x = [ x 3 e x ] 0 + 3 0 e x x 2 d x = \Gamma (4) = \int_{0}^\infty e^{-x}\cdot x^{4-1} dx = \int_{0}^\infty e^{-x}\cdot x^{3} dx = \left[- x^3 \cdot e^{-x}\right]^\infty_{0} + 3 \int_{0}^\infty e^{-x}\cdot x^{2} dx = = 3 0 e x x 2 d x = 3 ( [ x 2 e x ] 0 + 2 0 e x x d x ) = = 3 \int_{0}^\infty e^{-x}\cdot x^{2} dx = 3( \left[- x^2 \cdot e^{-x}\right]^\infty_{0} + 2 \int_{0}^\infty e^{-x}\cdot x dx) = = 6 0 e x x d x = 6 ( [ x e x ] 0 + 0 e x d x ) = = 6 \int_{0}^\infty e^{-x}\cdot x dx = 6( \left[- x \cdot e^{-x}\right]^\infty_{0} + \int_{0}^\infty e^{-x} dx) = 6 0 e x d x = 6 ( [ e x ] 0 ) = 6 = 3 ! 6 \int_{0}^\infty e^{-x} dx = 6( \left[- \cdot e^{-x}\right]^\infty_{0}) = 6 = 3!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...