Expodratic

Calculus Level 4

0 x 2 e x 2 d x \large \int_0^\infty x^2 e^{-x^2} \, dx

If the value of the integral above is equal to π A B \dfrac{\pi^A}{B} , where A A and B B are rational numbers, find a × b a\times b .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jan 18, 2016

0 x 2 e x 2 d x = 1 2 0 t 1 2 e t d t Let t = x 2 d t = 2 x d x = 1 2 0 t 3 2 1 e t d t = 1 2 Γ ( 3 2 ) Γ ( z ) is Gamma function = 1 2 × 1 2 Γ ( 1 2 ) = 1 2 × 1 2 π = π 1 2 4 \begin{aligned} \int_0^\infty x^2 e^{-x^2} dx & = \frac{1}{2} \int_0^\infty t^\frac{1}{2} e^{-t} dt \quad \quad \small \color{#3D99F6}{\text{Let }t = x^2 \quad \Rightarrow dt = 2 x \space dx} \\ & = \frac{1}{2} \int_0^\infty t^{\frac{3}{2}-1} e^{-t} dt \\ & = \frac{1}{2} \Gamma \left(\frac{3}{2} \right) \quad \quad \quad \quad \quad \small \color{#3D99F6}{\Gamma(z) \text{ is Gamma function}} \\ & = \frac{1}{2} \times \frac{1}{2} \Gamma \left(\frac{1}{2} \right) = \frac{1}{2} \times \frac{1}{2} \sqrt{\pi} = \frac{\pi^{\frac{1}{2}}}{4} \end{aligned}

A × B = 1 2 × 4 = 2 \Rightarrow A \times B = \frac{1}{2} \times 4 = \boxed{2}

Oliver Piattella
Jan 22, 2016

Consider the integral: I 0 e p x 2 d x = π 2 p . I \equiv \int_0^\infty e^{-px^2}dx = \sqrt{\frac{\pi}{2p}}\;. Therefore: 0 x 2 e x 2 d x = d I d p p = 1 = π 4 . \int_0^\infty x^2e^{-x^2}dx = -\left.\frac{dI}{dp}\right|_{p=1} = \frac{\sqrt{\pi}}{4}\;.

π 2 = 0 e x 2 d x = [ x e x 2 ] 0 + 0 2 x 2 e x 2 \dfrac{\sqrt{\pi}}{2} = \int_0^\infty e^{-x^2} dx = \left [x \cdot e^{-x^2}\right]^{\infty}_{0} + \int_0^\infty 2x^2 \cdot e^{-x^2}\Rightarrow 0 x 2 e x 2 d x = π 4 . . . \int_0^\infty x^2 \cdot e^{-x^2} dx = \frac{\sqrt{\pi}}{4}...

Akhilesh Vibhute
Jan 18, 2016

substitute x^2=t so GE=0.5*L.T of sqrt(t) GE=sqrt(PI)/4 GE- Given Expression LT- Laplace Transform

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...