Exponent ain't that tough

Algebra Level 3

x + 1 x = 5 , x 5 + 1 x 5 x 3 + 1 x 3 = ? \large x + \frac1x = 5 \quad,\quad \dfrac{x^5 + \frac1{x^5}}{x^3 + \frac1{x^3}} = \ ?

522 47 \frac { 522 }{ 47 } 479 49 \frac { 479 }{ 49 } 505 22 \frac { 505 }{ 22 } 527 23 \frac { 527 }{ 23 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Zarak K
Oct 15, 2015

The reciprocals give us a clue that some convenient cancellation will occur when we exponentiate (using the binomial theorem).

( x + 1 x ) 3 = 5 3 x 3 + 3 x 2 1 x + 3 x 1 x 2 + 1 x 3 = 125 x 3 + 3 x + 3 1 x + 1 x 3 = 125 x 3 + 3 ( x + 1 x ) + 1 x 3 = 125 x 3 + 3 ( 5 ) + 1 x 3 = 125 x 3 + 1 x 3 = 110 = 5 22 \begin{aligned} \left( x + \frac1x \right)^3 &= 5^3 \\ x^3 + 3x^2\cdot \frac1x +3x\cdot \frac{1}{x^2} + \frac{1}{x^3} &= 125 \\ x^3 + 3x + 3\frac1x + \frac{1}{x^3} &= 125 \\ x^3 + 3(x + \frac1x) + \frac{1}{x^3} &= 125 \\ x^3 + 3(5) + \frac{1}{x^3} &= 125 \\ x^3 + \frac{1}{x^3} &= 110 = 5\cdot 22 \end{aligned}

( x + 1 x ) 5 = 5 5 x 5 + 5 x 3 + 10 x + 10 x + 5 x 3 + 1 x 5 = 5 5 x 5 + 5 ( x 3 + 1 x 3 ) + 10 ( x + 1 x ) + 1 x 5 = 5 5 x 5 + 5 ( 110 ) + 10 ( 5 ) + 1 x 5 = 5 5 x 5 + 1 x 5 = 5 5 5 2 ( 24 ) = 5 2 ( 5 3 24 ) = 25 101 \begin{aligned} \left( x + \frac1x \right)^5 &= 5^5 \\ x^5 + 5x^3 +10x + \frac{10}{x} + \frac{5}{x^3}+ \frac{1}{x^5} &= 5^5 \\ x^5 + 5(x^3 + \frac{1}{x^3})+10(x + \frac{1}{x}) + \frac{1}{x^5} &= 5^5 \\ x^5 + 5(110)+10(5) + \frac{1}{x^5} &= 5^5 \\ x^5 + \frac{1}{x^5} &= 5^5 - 5^2(24) = 5^2(5^3 - 24) = 25\cdot 101 \\ \end{aligned}

x 5 + 1 x 5 x 3 + 1 x 3 = 25 101 5 22 = 505 22 \begin{aligned} \dfrac{x^5 + \frac1{x^5}}{x^3 + \frac1{x^3}} = \frac{25\cdot 101}{5 \cdot 22} = \frac{505}{22} \end{aligned}

Ashutosh Agrahari
Oct 15, 2015

The option given is incorrect. It should be \frac{505}{22} instead of \frac{527}{23}.

Thanks. I have updated the answer accordingly.

In future, if you spot any errors with a problem, you can “report” it by selecting "report problem" in the “dot dot dot” menu in the lower right corner. This will notify the problem creator who can fix the issues.

Brilliant Mathematics Staff - 5 years, 8 months ago
Toby M
Apr 22, 2019

You can also do it without the binomial theorem:

( x + 1 x ) 2 = 5 2 \left(x+\frac{1}{x} \right)^2 = 5^2 x 2 + 2 + 1 x 2 = 25 x^2+2+\frac{1}{x^2} = 25 x 2 + 1 x 2 = 23 (1) x^2+\frac{1}{x^2} = 23 \tag{1} ( x 2 + 1 x 2 ) ( x + 1 x ) = 23 5 \left(x^2+\frac{1}{x^2} \right) \left(x + \frac{1}{x} \right) = 23 \cdot 5 x 3 + ( x + 1 x ) + 1 x 3 = 115 x^3 + \left(x + \frac{1}{x} \right) + \frac{1}{x^3} = 115 x 3 + 1 x 3 = 110 (2) x^3 + \frac{1}{x^3} = 110 \tag{2}

Meanwhile, using equation 1 1 : ( x 2 + 1 x 2 ) 2 = 2 3 2 \left(x^2+\frac{1}{x^2} \right)^2 = 23^2 x 4 + 2 + 1 x 4 = 529 x^4+2+\frac{1}{x^4} = 529 x 4 + 1 x 4 = 527 x^4+\frac{1}{x^4} = 527 ( x 4 + 1 x 4 ) ( x + 1 x ) = 527 5 \left(x^4+\frac{1}{x^4} \right) \left(x+\frac{1}{x} \right) = 527 \cdot 5 x 5 + ( x 3 + 1 x 3 ) + 1 x 5 = 2635 x^5+\left(x^3 + \frac{1}{x^3} \right) +\frac{1}{x^5} = 2635 x 4 + 1 x 4 = 2635 110 = 2525 x^4+\frac{1}{x^4} = 2635 - 110 = 2525 from equation 2.

Therefore, the expression equals 2525 110 = 505 22 \frac{2525}{110} = \frac{505}{22} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...