Exponential A.P

9 8 7 6 5 4 3 2 1 \Huge {\color{#3D99F6}9}^{{\color{#20A900}8}^{{\color{#D61F06}7}^{{\color{#624F41}6}^{{\color{#302B94}5}^{{\color{magenta}4}^{{\color{grey}3}^{{\color{#BA33D6}2}^{\color{#E81990}1}}}}}}}}

Find the last three digits of the number above.


The answer is 721.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Arjen Vreugdenhil
Oct 17, 2015

Name the expression A A . We must calculate A A mod 1000, and do that by considering both A A mod 8 and A A mod 125. First of all, A = 9 B 1 B 1 mod 8. A = 9^B \equiv 1^B \equiv 1\ \text{mod}\ 8. For the mod 125, we need to know the exponent B B modulo ϕ ( 125 ) = 100 = 4 × 25 \phi(125) = 100 = 4\times 25 . Writing B = 8 C , B = 8^C, we see immediately that B = 8 C 0 C 0 mod 4. B = 8^C \equiv 0^C \equiv 0\ \text{mod}\ 4. It takes more effort to find 8 C 8^C modulo 25. This requires that we find C C modulo ϕ ( 25 ) = 20 = 4 × 5. \phi(25) = 20 = 4\times 5.

Start by writing C = 7 D C = 7^D . Since D D , a power of 6, will be even, we have C = 7 D ( 1 ) D 1 mod 4. C = 7^D \equiv (-1)^D \equiv 1\ \text{mod}\ 4. Also, considering the fact that D = 6 E D = 6^E will be a multiple of 4 = ϕ ( 5 ) 4 = \phi(5) , we have C 2 D 2 0 1 mod 5. C \equiv 2^D \equiv 2^0 \equiv 1\ \text{mod}\ 5. Combining what we have about C C we conclude C 1 mod 20 ; C \equiv 1\ \text{mod}\ 20; B = 8 C 8 1 8 mod 25. B = 8^C \equiv 8^1\equiv 8\ \text{mod}\ 25. Combine this with B 0 B \equiv 0 mod 4, and we have B 8 mod 100 ; B \equiv 8\ \text{mod}\ 100; A = 9 B 9 8 8 1 4 6 1 2 221 mod 125. A = 9^B \equiv 9^8 \equiv 81^4 \equiv 61^2 \equiv 221\ \text{mod}\ 125. Finally, combined with A 1 A \equiv 1 mod 8, this results in A 721 mod 1000. A \equiv \boxed{721}\ \text{mod}\ 1000.

Could we do it like this?

We see that for any power of 6, the u.d is always 6. Then , for every power of 7 that leaves remainder 2 on dividing by 4, the u.d is 9. Then , for every power of 8 that leaves remainder 1 on dividing by 4, the u.d is 8. thus calculate the last three digits of 9^8 by squaring the last three digits of 9^4

Sarthak Singla - 5 years, 7 months ago

Log in to reply

This does not make sense. You can't just look at the last digit of b b to figure out the last digit of a b a^b

Otto Bretscher - 5 years, 7 months ago

No. You are thinking of applying Euler's Theorem . To do so, we must calculate ϕ ( 1000 ) = 1 2 × 4 5 × 1000 = 400 \phi(1000) = \frac{1}{2} \times \frac{4}{5} \times 1000 = 400 . Hence, to determine the last 3 digits, we need to look at the exponent 8 7 8 ^ { 7 \ldots } modulo 400 (instead of 1000).

Similarly, to determine it modulo 400, since ϕ ( 400 ) = 160 \phi (400) = 160 , thus we need to look at the exponent 7 6 7 ^ { 6 \ldots } modulo 160. So on and so forth.

Calvin Lin Staff - 5 years, 7 months ago

Sounds good! I overlooked the simple fact that 6 n 6^n always ends in 6; that is why I worked from the bottom upward.

Arjen Vreugdenhil - 5 years, 7 months ago

Log in to reply

I think that the tens digit also has some role to play here. So I am not sure if I am correct.

Sarthak Singla - 5 years, 7 months ago

Woah I wasted my 2 attempts by putting 1 as the answer LOL

A Former Brilliant Member - 5 years, 7 months ago

Log in to reply

yeah...me too

Arkajyoti Maity - 5 years, 7 months ago
Otto Bretscher
Oct 22, 2015

My approach is similar to Arjen's. I will use Arjen's time-saving notation A = 9 B = 9 8 C = 9 8 7 D A=9^B=9^{8^C}=9^{8^{7^D}} . Let's consider the Carmichael Lambda throughout, with λ ( 1000 ) = 100 , λ ( 25 ) = 20 \lambda(1000)=100,\lambda(25)=20 and λ ( 20 ) = 4 \lambda(20)=4 .

Now D 0 ( m o d 4 ) D\equiv 0\pmod{4} so C = 7 D 7 0 = 1 ( m o d 20 ) C=7^D\equiv 7^0= 1\pmod{20} and B = 8 C 8 1 = 8 ( m o d 25 ) B=8^C\equiv 8^1=8\pmod{25} . It follows that B 8 ( m o d 100 ) B\equiv 8 \pmod{100} as well so that A = 9 B 9 8 = ( 1 + 10 ) 8 1 8 10 + ( 8 2 ) 100 721 ( m o d 1000 ) A=9^B\equiv 9^8=(-1+10)^8\equiv 1-8*10+{8\choose 2}100\equiv \boxed{721} \pmod{1000}

Mas Mus
Oct 22, 2015

The question is finding 9 8 7 6 5 4 3 2 1 \large{ \color{#3D99F6}9^{\color{#20A900}8^{\color{#D61F06}7^{\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}}}}} modulo 1000 1000 . By Euler's Theorem, The question can be changed to be

9 8 7 6 5 4 3 2 1 { 1 ( m o d 8 ) 9 ( 8 7 6 5 4 3 2 1 m o d ϕ ( 1000 ) ) ( m o d 125 ) \large{ \color{#3D99F6}9^{\color{#20A900}8^{\color{#D61F06}7^{\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}}}}}\equiv\begin{cases}1\pmod{8}\\ \large \color{#3D99F6}9^{\left(\color{#20A900}8^{\color{#D61F06}7^{\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}}}\bmod~{\phi(1000)}\right)}\pmod{125}\end{cases}

We need to find 8 7 6 5 4 3 2 1 \large{ \color{#20A900}8^{\color{#D61F06}7^{\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}}}} modulo ϕ ( 1000 ) = 1000 × ( 1 1 2 ) × ( 1 4 5 ) = 400 \phi(1000)=1000\times{\left(1-\frac{1}{2}\right)}\times{\left(1-\frac{4}{5}\right)}=400

Now, we find the residu of 8 7 6 5 4 3 2 1 \large{ \color{#20A900}8^{\color{#D61F06}7^{\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}}}} modulo 16 16 and 25 25 . Note that 8 2 0 ( m o d 16 ) 8^{2}\equiv0\pmod{16} , then since 8 7 6 5 4 3 2 1 = 8 2 × 8 n \large{ \color{#20A900}8^{\color{#D61F06}7^{\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}}}}=8^2\times{8^n} , so 8 7 6 5 4 3 2 1 0 ( m o d 16 ) \large{ \color{#20A900}8^{\color{#D61F06}7^{\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}}}}\equiv0\pmod{16} . Now, by using Euler's Theorem with ϕ ( 25 ) = 20 \phi(25)=20 we evaluate

8 7 6 5 4 3 2 1 { 0 ( m o d 16 ) 8 ( 7 6 5 4 3 2 1 m o d 20 ) ( m o d 25 ) \large{\color{#20A900}8^{\color{#D61F06}7^{\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}}}}\equiv\begin{cases}0\pmod{16}\\ \color{#20A900}8^{\left(\color{#D61F06}7^{\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}}\bmod~{20}\right)}\pmod{25}\end{cases}

We need to find 7 6 5 4 3 2 1 \large\color{#D61F06}7^{\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}} modulo 20 20 , then we must find 6 5 4 3 2 1 \large\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}} modulo ϕ ( 20 ) = 8 \phi(20)=8 . Note that 6 3 0 ( m o d 8 ) 6^{3}\equiv0\pmod{8} . Since 6 5 4 3 2 1 = 6 3 × 6 m \large\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}=6^{3}\times{6^{m}} , so 6 5 4 3 2 1 0 ( m o d 8 ) \large\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}\equiv0\pmod{8} . Now, we have 7 6 5 4 3 2 1 7 0 ( m o d 20 ) \large\color{#D61F06}7^{\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}}\equiv7^{0}\pmod{20} .

Thus,

8 7 6 5 4 3 2 1 { 0 ( m o d 16 ) 8 ( m o d 25 ) \large{ \color{#20A900}8^{\color{#D61F06}7^{\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}}}}\equiv\begin{cases}0\pmod{16}\\ 8\pmod{25}\end{cases}

Using Chinese Rimainder Theorem we get 8 7 6 5 4 3 2 1 208 ( m o d 400 ) \large{ \color{#20A900}8^{\color{#D61F06}7^{\color{#624F41}6^{\color{#302B94}5^{\color{magenta}4^{\color{grey}3^{\color{#BA33D6}2^\color{#E81990}1}}}}}}}\equiv208\pmod{400} . Now, using this value, our first congruence system becomes

9 208 { 1 ( m o d 8 ) 96 ( m o d 125 ) \large{ \color{#3D99F6}9^{208}}\equiv\begin{cases}1\pmod{8}\\ 96\pmod{125}\end{cases}

Finally, again using Chinese Rimainder Theorem, we get 9 208 721 ( m o d 1000 ) \large{ \color{#3D99F6}9^{208}}\equiv721\pmod{1000}

Hence, the answer is 721 \large{\boxed{721}}

Rushikesh Jogdand
Jul 12, 2016

Brute Force.

  • We need to find x = 9 a m o d 1000 x=9^a \mod{1000} .

  • Find the cycle of 9 modulo 1000. It's

    [9, 81, 729, 561, 49, 441, 969, 721, 489, 401, 609, 481, 329, 961, 649, 841, 569, 121, 89, 801, 209, 881, 929, 361, 249, 241, 169, 521, 689, 201, 809, 281, 529, 761, 849, 641, 769, 921, 289, 601, 409, 681, 129, 161, 449, 41, 369, 321, 889, 1]

Which is of length 50 \boxed{50} .

  • So, now find a = 8 b m o d 50 a=8^b \mod{50} .

  • Cycle of 8 modulo 50. It's

    [8, 14, 12, 46, 18, 44, 2, 16, 28, 24, 42, 36, 38, 4, 32, 6, 48, 34, 22, 26]

Which is of length 20 \boxed{20} .

  • Now find b = 7 c m o d 20 b=7^c \mod{20} .

  • Cycle of 7 modulo 20. It's

    [7, 9, 3, 1]

Which is of length 4 \boxed{4} .

  • c = 6 5 = 0 m o d 4 c=6^{5^{\cdots}}=0 \mod{4} .

  • b = 1 m o d 20 \therefore b=1 \mod{20}

  • a = 8 m o d 50 \therefore a=8 \mod{50}

  • x = 721 m o d 1000 \therefore \boxed{x=721 \mod{1000}}

Aareyan Manzoor
Nov 1, 2015

we know that x n x n ( m o d ϕ ( m ) ) ( m o d m ) x^n\equiv x^{n\pmod{\phi(m)}} \pmod {m} . where ϕ ( k ) \phi(k) is eulerss toitent function. using this continuously on all the exponents, . we start computing from thr top, but wait! we see that 6 5 0 ( m o d 64 ) 6^{5^{\cdots}}\equiv 0 \pmod {64} . so we can just ut it as 0 to get 7 0 7^0 . we see that it becomes one making the exponent: 9 8 1 ( 9 4 ) 2 56 1 2 721 ( m o d 1000 ) 9^{8^1}\equiv (9^4)^2\equiv 561^2\equiv \boxed{721}\pmod{1000}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...