Exponential divisibility?

Let the n n ordered pairs ( a , b ) (a,b) such that 7 a 3 b 7^a-3^b divides a 4 + b 2 a^4+b^2 and a , b N a,b\in N be ( a 1 , b 1 ) , ( a 2 , b 2 ) , . . . , ( a n , b n ) (a_{1},b_{1}),(a_{2},b_{2}),...,(a_{n},b_{n}) . Calculate i = 1 n ( a i + b i ) \displaystyle\sum_{i=1}^{n} (a_{i}+b_{i})


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pranjal Jain
Jan 6, 2015

7 a 3 b 7^a-3^b is even, so a 4 + b 2 a^4+b^2 has to be even as well. Hence a a and b b have the same parity.

Consider the case when both a a and b b are odd.

a 4 + b 2 1 + 1 = 2 m o d 4 a^4+b^2\equiv 1+1=2\mod 4

7 a 3 b 7 3 0 m o d 4 7^a-3^b\equiv 7-3\equiv 0\mod 4

So a 4 + b 2 a^4+b^2 cannot be divisible by 7 a 3 b 7^a-3^b

Hence, both a a and b b are even.

Let a = 2 m a=2m and b = 2 n b=2n . Then 7 a 3 b = 7 2 m 3 2 n = 7 m 3 n 2 × 2 ( 7 m + 3 n ) 7^a-3^b=7^{2m}-3^{2n}=\dfrac{7^m-3^n}{2}×2(7^m+3^n) and both factors are integers. So 2 ( 7 m + 3 n ) ( 7 a 3 b ) 2(7^m+3^n)|(7^a-3^b) and ( 7 a 3 b ) ( a 4 + b 2 ) (7^a-3^b)|(a^4+b^2) =2(8m^4+2n^2))

Therefore, 7 m + 3 n 8 m 4 + 2 n 2 7^m+3^n\leq 8m^4+2n^2 .....(1) \color{#D61F06}{\text{.....(1)}}

It can be proved by induction that 8 m 4 < 7 m 8m^4<7^m for m 4 m\geq 4 , 2 n 2 < 3 n 2n^2<3^n for n 1 n\geq 1 and 2 n 2 + 9 3 n 2n^2+9\leq 3^n for n 3 n\geq 3 .

For m 4 m\geq 4 , we get 7 m + 3 n > 8 m 4 + 2 n 2 7^m+3^n>8m^4+2n^2 which contradicts obtained inequation (1) \color{#D61F06}{\text{(1)}} .

So we have 3 3 possible cases,

  • m=1. Then a = 2 a=2 and 8 + 2 n 2 7 + 3 n 8+2n^2\geq 7+3^n thus, 2 n 2 + 1 3 n 2n^2+1\geq 3^n . This is only possible when n 2 n\leq 2 . Checking manually, we get n = 2 n=2 satisfies, hence ( 2 , 4 ) (2,4) is a solution.

  • m=2. Then a = 4 a=4 and a^4+b^2=256+4n^2\geq |7^4-3^b|=|49-3^n|(49+3^n). The smallest value of first factor is \(22 attained at n = 3 n=3 , so 128 + 2 n 2 11 ( 49 + 3 n ) 128+2n^2\geq 11(49+3^n) , which is impossible since 3 n > 2 n 2 3^n>2n^2 .

  • m=3. Then a = 6 a=6 and a^4+b^2=1296+4n^2\geq |7^6-3^b|=|343-3^n|(343+3^n). The smallest value of first factor is \(100 attained at n = 5 n=5 , so 324 + n 2 25 ( 343 + 3 n ) 324+n^2\geq 25(343+3^n) , which is impossible since 3 n > 2 n 2 3^n>2n^2 .

Hence, the only possible ordered pair ( a , b ) = ( 2 , 4 ) (a,b)=(2,4) . So the answer is 2 + 4 = 6 2+4=\boxed{6}

Brock Brown
Jan 6, 2015

There exists one ordered pair that satisfies the condition: (2, 4). This produces a value of 32 for a 4 a^{4} + b 2 b^{2} and -32 for 7 a 7^{a} - 3 b 3^{b} .

-32 evenly divides 32, so (2, 4) is a valid pair. Therefore the summation of all elements of the ordered pairs is 6.

It should be proved that no other ordered pair exists. Did you wolfram alpha'ed it?

Pranjal Jain - 6 years, 5 months ago

Log in to reply

I'll give it a try in the morning. It's pretty tough.

Cool problem, by the way.

Brock Brown - 6 years, 5 months ago

Log in to reply

Oh thanks! I see! Ill appreciate pythod method. Please post one here!

Pranjal Jain - 6 years, 5 months ago

No, I used a Python method.

Brock Brown - 6 years, 5 months ago

A l g o r i t h e m f o r s o l v i n g t h r o u g h a T I 83 P l u s C a l c u l a t o r Algorithem~~for ~~solving~~through~~a~~TI-83~Plus~~Calculator

1 S T O a . . . . . . . . . . . . m e a n s E N T E R . 0 S T O b b + 1 S T O b : ( a 4 + b 2 ) ÷ ( 7 a 3 b ) Go-on pressing  ENTRY....(2nd and  ENTER) till you get an integer as an answer. o r e l s e s t o p a t s a y b = 10 N e x t f o r a = 2 : 2 S T O a 0 S T O b E N T R Y . . . a s a b o v e t i l l y o u g e t a n i n t e g e r a s a n a n s w e r . o r b = 10 Y o u w i l l g e t 1 a t b = 4 a n d a = 2. Go_on increasing a by one starting from b stored as 0. \color{#D61F06}{1~~STO\rightarrow~a~~\downarrow .}...........\downarrow ~means ~ENTER.\\ 0~~STO\rightarrow~b~~\downarrow \\ b+1~~STO\rightarrow~b~~\downarrow ~~~{\Huge : }~~(a^4+b^2)\div (7^a~-~3*b)~~\downarrow \\ \text{Go-on pressing ~ENTRY....(2nd~and ~ENTER)~}\\ \text{till~you~get~an~integer~as~an~answer.} \\ or~else~stop~at~say~b=10\\ ~~~\\ \color{#D61F06}{Next~ for~ a=2:-}\\ 2~~STO\rightarrow~a~~\downarrow \\ 0~~STO\rightarrow~b~~\downarrow \\ ENTRY...as ~above~till~you~get~an~integer~as~an~answer.~~or ~b=10\\ You~will~get~-1~~at~~b=4~~and ~~a=2.\\ \text{Go\_on increasing a by one starting from b stored as 0. }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...