Evaluating An Exponential Function

Algebra Level 3

f ( x ) = e x + e x e x e x \large f(x)=\frac{e^x+e^{-x}}{e^x-e^{-x}}

Suppose we define the function f ( x ) f(x) as above. If f ( a ) = 5 3 f(a)=\frac{5}{3} and f ( b ) = 7 5 , f(b)=\frac{7}{5}, what is the value of f ( a + b ) ? f(a+b)?

26 23 \frac{26}{23} 25 23 \frac{25}{23} 27 23 \frac{27}{23} 24 23 \frac{24}{23}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

Prasun Biswas
Feb 7, 2014

Given that, f ( x ) = e x + e x e x e x f(x)=\frac{e^x+e^-x}{e^x-e^-x} . Then, we have -------

f ( x ) = e x + 1 e x e x 1 e x \large{f(x)=\frac{e^x+\frac{1}{e^x}}{e^x-\frac{1}{e^x}}}

f ( x ) = e 2 x + 1 e x e 2 x 1 e x \large{\implies f(x)=\frac{\frac{e^{2x}+1}{e^x}}{\frac{e^{2x}-1}{e^x}}}

f ( x ) = e 2 x + 1 e 2 x 1 \large{\implies f(x)=\frac{e^{2x}+1}{e^{2x}-1}} .....(i)

From (i), we get----

e 2 a + 1 e 2 a 1 = f ( a ) = 5 3 \large{\frac{e^{2a}+1}{e^{2a}-1}=f(a)=\frac{5}{3}}

3 e 2 a + 3 = 5 e 2 a 5 2 e 2 a = 8 e 2 a = 4 \large{3e^{2a}+3=5e^{2a}-5 \implies 2e^{2a}=8 \implies e^{2a}=4} .....(ii)

Also, we get from (i)-----

e 2 b + 1 e 2 b 1 = f ( b ) = 7 5 \large{\frac{e^{2b}+1}{e^{2b}-1}=f(b)=\frac{7}{5}}

5 e 2 b + 5 = 7 e 2 b 7 2 e 2 b = 12 e 2 b = 6 \large{5e^{2b}+5=7e^{2b}-7 \implies 2e^{2b}=12 \implies e^{2b}=6} .....(iii)

Then, from (i),(ii) and (iii), we have----

f ( a + b ) = e 2 ( a + b ) + 1 e 2 ( a + b ) 1 = e 2 a × e 2 b + 1 e 2 a × e 2 b 1 = 4 × 6 + 1 4 × 6 1 = 24 + 1 24 1 = 25 23 \large{f(a+b)=\frac{e^{2(a+b)}+1}{e^{2(a+b)}-1}}=\frac{e^{2a}\times e^{2b}+1}{e^{2a}\times e^{2b}-1}=\frac{4\times 6 +1}{4\times 6 -1}=\frac{24+1}{24-1}=\boxed{\frac{25}{23}}

When you said 2e^2b = 12 and then simplifying it, you said e^2a = 6. It should be e^2b = 6 if I am not mistaken.

Revanth Gumpu - 7 years, 4 months ago

Log in to reply

Oh yes!! Sorry for that. Yes, we get e 2 a = 4 e^{2a}=4 and e 2 b = 6 e^{2b}=6 . I was in a hurry while posting the solution and so I didn't see the mistake. Thanks for pointing it out !!

NOTE: The mistake has been corrected now.

Prasun Biswas - 7 years, 4 months ago

5 3 = e a + e a e a e a \frac{5}{3}=\frac{e^{a}+e^{-a}}{e^{a}-e^{-a}}

5 + 3 5 3 = 2 e a 2 e a = e 2 a \frac{5+3}{5-3}=\frac{2e^{a}}{2e^{-a}}=e^{2a}

so, e a = 4 e^{a}=\sqrt{4}

similarly e b = 6 e^{b}=\sqrt{6}

so, e a + b = 24 e^{a+b}=\sqrt{24}

thereby, f(a+b) = 24 + 24 1 24 24 1 \frac{\sqrt{24}+\sqrt{24}^{-1}}{\sqrt{24}-\sqrt{24}^{-1}}

= 25 23 =\frac{25}{23}

Suman Saha - 7 years, 3 months ago

k

Venkatesh Durga - 7 years, 4 months ago

fair solution

Ravi Mahar - 7 years, 4 months ago

PLEASANT ANSWER

Virat Shinde - 7 years, 4 months ago

exponential knowledge only

AMIT VERMA - 7 years, 4 months ago

thanks for the solution

levi kinika - 7 years, 3 months ago

f(x)=1/(tanh(x)) I lokked for a and b and then lokked for f(a+b)

hiba hmila - 7 years, 3 months ago

simply e^a is 4 and e^-a is 1 by comparing..and e^b and e^-b is 6 and 1 so for e^a+b simply multiply..game over..real easy

You won the internet Sir.

Erwin Zarsadias Jr. - 7 years, 4 months ago

how did you know that e^a is 4 and e^-a is 1? As well as with b? thanks.

Gervy Celeste - 7 years, 4 months ago

how did you know that?? mathematician...

Jonas Desquitado Bravo - 7 years, 4 months ago

ohkk the easier solution for this ..the function given above is f(x)=coth(x)=coth x = (e^x + e^-x)/(e^x - e^-x) he was basically asking cot h(a+b).....just see hyperbolic function and u will get it " coth(x ± y) = (coth x coth y ± l)/(coth y ± coth x) """

Gopi Chan - 7 years, 4 months ago

yes right. but if e^a = 4; then this implies e^-a = ¼ isn't that ?

Soham Zemse - 7 years, 4 months ago
Chetan Panchal
Feb 7, 2014

using first equality you can see easily that e 2 a e^{2a} is 4 and from second, you can see that e 2 b e^{2b} is 6. Now, f ( a + b ) f(a+b) is simply ( e 2 a × e 2 b + 1 ) / ( e 2 a × e 2 b 1 ) (e^{2a} \times e^{2b} + 1) /(e^{2a} \times e^{2b} - 1) . Just replace values!

Please focus on e 2 x e^{2x} . So that f ( x ) = ( e 2 x + 1 ) / ( e 2 x 1 ) f(x) = (e^{2x} + 1) / (e^{2x} - 1) . It makes it too easy!

Chetan Panchal - 7 years, 4 months ago
Rana Padi
Feb 10, 2014

At first solve f(a)=5/3 and f(b)=7/5 to get e^{a} and e^{b} respectively. Now substitute these obtained values in f(a+b) to get it's value.

Micah Wood
Mar 4, 2014

If you know hyperbolic functions, you can use them to make this problem easier; we can see that e x + e x e x e x = coth ( x ) \dfrac{e^x+e^{-x}}{e^x-e^{-x}} = \coth{(x)} Using hyperbolic identity, we get coth ( a + b ) = 1 + coth ( a ) coth ( b ) coth ( a ) + coth ( b ) = 1 + f ( a ) f ( b ) f ( a ) + f ( b ) \coth{(a+b)} = \dfrac{1+\coth{(a)}\coth{(b)}}{\coth{(a)}+\coth{(b)}} = \dfrac{1+f(a)f(b)}{f(a)+f(b)} Substitute values to get answer. 1 + ( 5 3 ) ( 7 5 ) 5 3 + 7 5 = 25 23 \dfrac{1+\left(\dfrac{5}{3}\right)\left(\dfrac{7}{5}\right)}{\dfrac{5}{3}+\dfrac{7}{5}} = \boxed{\dfrac{25}{23}}

Nodar Beridze
Feb 27, 2014

5/3=(4+1)/(4-1) ... 7/5=(6+1)/(6-1) -> from answers: x/23=(z+1)/(z-1) -> z=24, -> x=25 ... 25/23

Shubham Poddar
Feb 27, 2014

Get the value of 2a from f(a)=5/3 which comes to be log4 and in the same way get the value of 2b from f(b)=7/5 which will comes to be log6.

Hence the value of 2a+2b=log24

Now put the value of 2(a+b)=log24 in f(a+b) and get the answer 25/23.

Arpan Dewanjee
Feb 26, 2014

It's easy.

e^{2a} = 4 e^{2b} = 6

Solving the equation answer is 25/23

Hùng Minh
Feb 13, 2014

e a + e a e a e a = 5 3 \frac{e^{a}+e^{-a}}{e^{a}-e^{-a}}=\frac{5}{3}

We suppose e^{a}+e^{-a} = 5 and e^{a}-e^{-a} = 3 <=> e^{a} = 4 and e^{-a} = 1.

So on, we have e^{b} = 6 and e^{-b} = 1.

e a + b + e a b e a + b e a b = e a e b + e a e b e a e b e a e b = 4 6 + 1 4 6 1 = 25 23 \frac{e^{a+b}+e^{-a-b}}{e^{a+b}-e^{-a-b}}=\frac{e^{a}e^{b}+e^{-a}e^{-b}}{e^{a}e^{b}-e^{-a}e^{-b}}=\frac{4*6+1}{4*6-1}=\frac{25}{23}

f ( a ) = e a + e a e a e a = 5 3 f(a)=\frac{e^a+e^{-a}}{e^a-e^{-a}}=\frac{5}{3} e a + e a + e a e a e a + e a e a e a = 5 + 3 5 3 \frac{e^a+e^{-a}+e^a-e^{-a}}{e^a+e^{-a}-e^a-e^{-a}}=\frac{5+3}{5-3} e a e ( a ) = 8 2 \frac{e^a}{e^(-a)}=\frac{8}{2} e 2 a = 4 e^{2a}=4

f ( b ) = e b + e b e b e b = 7 5 f(b)=\frac{e^b+e^{-b}}{e^b-e^{-b}}=\frac{7}{5} e b + e b + e b e b e b + e b e b e b = 7 + 5 7 5 \frac{e^b+e^{-b}+e^b-e^{-b}}{e^b+e^{-b}-e^b-e^{-b}}=\frac{7+5}{7-5} e b e ( b ) = 12 2 \frac{e^b}{e^(-b)}=\frac{12}{2} e 2 b = 6 e^{2b}=6

f ( x ) = e x + e x e x e x f(x)=\frac{e^x+e^{-x}}{e^x-e^{-x}} f ( x ) = e x ( 1 + e 2 x ) e x ( e 2 x 1 ) f(x)=\frac{e^{-x}(1+e^{2x})}{e^{-x}(e^{2x}-1)} f ( x ) = 1 + e 2 x e 2 x 1 f(x)=\frac{1+e^{2x}}{e^{2x}-1} f ( a + b ) = 1 + e 2 ( a + b ) e 2 ( a + b ) 1 f(a+b)=\frac{1+e^{2(a+b)}}{e^{2(a+b)}-1} f ( a + b ) = 1 + e 2 a e 2 b e 2 a e 2 b 1 = 1 + 6 4 6 4 1 = 25 23 f(a+b)=\frac{1+e^{2a}*e^{2b}} {e^{2a}*e^{2b}-1}=\frac{1+6*4}{6*4-1}=\frac{25}{23}

this is good

Muni Babu - 7 years, 4 months ago

upon solving for a and b for the given values, we get- a = (log4)/2 and b = (log6)/2 solve substituting these values in the equation of f(x)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...