Exponential G.P

48 24 12 6 3 \Huge {\color{#3D99F6}{48}}^{{\color{#20A900}{24}}^{{\color{#D61F06}{12}}^{{\color{#624F41}{6}}^{\color{magenta}{3}}}}}

Find the last two digits of the number above.


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mehul Arora
Jul 7, 2016

Let's call The given number as S \mathfrak{S}

Method using the Chinese remainder theorem:

Please refer to this wiki if you're unfamiliar with how to calculate a modulo using the CRT.

Break mod 100 into two parts, two numbers coprime to each other.

1 ) m o d 4 1) \mod 4

48 0 m o d 4 , S 0 m o d 4 48 \equiv 0 \mod 4, \therefore \mathfrak{S} \equiv 0 \mod 4

2 ) m o d 25 2) \mod 25

S ( 25 + 23 ) 1 2 6 3 2 3 1 2 6 3 m o d 25 \mathfrak{S} \equiv (25+23)^{12^{6^3}} \equiv 23^{12^{6^3}} \mod 25

Because 23 and 25 are coprime, we can use Euler's Theorem

2 3 20 1 m o d 25 , ϕ ( 25 ) = 20 23^{20} \equiv 1 \mod 25 ,\because \phi(25) =20

S 2 2 4 1 2 6 3 m o d 20 m o d 25 \therefore \mathfrak{S} \equiv -2^{24^{12^{6^3} }\mod 20} \mod 25

Now, 2 4 1 2 6 3 4 1 2 6 3 m o d 20 24^{12^{6^3}} \equiv 4^{12^{6^3}} \mod 20

Observe that: 4 2 n 16 m o d 20 4^{2n} \equiv 16 \mod 20

2 4 1 2 6 3 0 m o d 2 , 2 4 1 2 6 3 16 m o d 20 \because 24^{12^{6^3}} \equiv 0 \mod 2, \therefore 24^{12^{6^3}} \equiv 16 \mod 20

S 2 16 4 8 1 6 4 25 6 2 6 2 11 m o d 25 \therefore \mathfrak{S} \equiv -2^{16} \equiv 4^8 \equiv 16^4 \equiv 256^2 \equiv 6^2 \equiv 11 \mod 25

Now, we apply the CRT.

n 1 = 4 , y 1 = 25 , z 1 = 1 , a 1 = 0 n_1 = 4, y_1 = 25 ,z_1 =1, a_1 =0

n 2 = 25 , y 2 = 4 , z 2 = 19 , a 2 = 11 (As calculated above) n_2 =25, y_2 =4 , z_2 = 19, a_2 = 11 \text{(As calculated above)}

S Σ i = 1 2 a i y i z i = 0 + 76 × 11 836 36 m o d 100 \therefore \mathfrak{S} \equiv \Sigma^2_{i=1} a_iy_iz_i = 0+76 \times 11 \equiv 836 \equiv 36 \mod 100

Answer = 36 \text{Answer} = 36

Q.E.D.

In second last line it should be Answer=36 right ?

(+1) for the solution and QED ;>

abc xyz - 4 years, 11 months ago

Log in to reply

Oops! Thanks, Edited :)

Mehul Arora - 4 years, 11 months ago

Let the number be 4 8 α = 4 8 2 4 β = 4 8 2 4 1 2 γ \large 48^\alpha = 48^{24^\beta} = 48^{24^{12^\gamma}} . We need to find 4 8 α mod 100 48^\alpha \text{ mod }100 . Let us consider n mod 4 n \text{ mod }4 and n mod 25 n \text{ mod }25 separately.

4 8 α 0 (mod 4) 4 8 α 4 8 2 4 β mod ϕ ( 25 ) (mod 25) As gcd ( 48 , 25 ) = 1 , Euler’s theorem applies. 4 8 2 4 β mod 20 (mod 25) \begin{aligned} 48^\alpha & \equiv 0 \text{ (mod 4)} \\ 48^\alpha & \equiv 48^{\color{#3D99F6}{24^\beta \text{ mod }\phi (25)}} \text{ (mod 25)} & \small \color{#3D99F6}{\text{As }\gcd (48,25) = 1, \text{ Euler's theorem applies.}} \\ & \equiv 48^{\color{#3D99F6}{24^\beta \text{ mod }20}} \text{ (mod 25)} \end{aligned}

Now consider 2 4 β mod 20 \color{#3D99F6}{24^\beta \text{ mod }20} .

2 4 β 0 (mod 4) 2 4 β 2 4 1 2 γ mod ϕ ( 5 ) (mod 5) As gcd ( 24 , 5 ) = 1 , Euler’s theorem applies. 2 4 1 2 γ mod 4 (mod 5) 2 4 0 (mod 5) 1 (mod 5) 2 4 β 96 (mod 20) Since 4 × 24 = 96 0 (mod 4) 1 (mod 5) 16 (mod 20) \begin{aligned} 24^\beta & \equiv 0 \text{ (mod 4)} \\ 24^\beta & \equiv 24^{\color{#3D99F6}{12^\gamma \text{ mod }\phi (5)}} \text{ (mod 5)} & \small \color{#3D99F6}{\text{As }\gcd (24,5) = 1, \text{ Euler's theorem applies.}} \\ & \equiv 24^{\color{#3D99F6}{12^\gamma \text{ mod }4}} \text{ (mod 5)} \\ & \equiv 24^{0} \text{ (mod 5)} \\ & \equiv 1 \text{ (mod 5)} \\ \implies 24^\beta & \equiv 96 \text{ (mod 20)} & \small \color{#3D99F6}{\text{Since }4\times 24 = 96 \equiv 0 \text{ (mod 4)} \equiv 1 \text{ (mod 5)}} \\ & \equiv 16 \text{ (mod 20)} \end{aligned}

4 8 α 4 8 2 4 β mod 20 (mod 25) 4 8 16 (mod 25) ( 2 ) 16 (mod 25) 2 16 (mod 25) 1024 64 (mod 25) 14 (mod 25) 11 (mod 25) \begin{aligned} \implies 48^\alpha & \equiv 48^{\color{#3D99F6}{24^\beta \text{ mod }20}} \text{ (mod 25)} \\ & \equiv 48^{16} \text{ (mod 25)} \\ & \equiv (-2)^{16} \text{ (mod 25)} \\ & \equiv 2^{16} \text{ (mod 25)} \\ & \equiv 1024 \cdot 64 \text{ (mod 25)} \\ & \equiv -14 \text{ (mod 25)} \\ & \equiv 11 \text{ (mod 25)} \end{aligned}

4 8 α 32 × 48 (mod 100) 1536 (mod 100) Since 1536 0 (mod 4) 11 (mod 25) 36 (mod 100) \begin{aligned} \implies 48^\alpha & \equiv 32 \times 48 \text{ (mod 100)} \\ & \equiv 1536 \text{ (mod 100)} & \small \color{#3D99F6}{\text{Since } 1536 \equiv 0 \text{ (mod 4)} \equiv 11 \text{ (mod 25)}}\\ & \equiv \boxed{36} \text{ (mod 100)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...