Exponential Inequality

Algebra Level 2

Let a a and b b be the minimum and maximum values of x x , respectively, that satisfy the inequality 2 x ( 2 2 x + 8 ) 8 x ( 5 2 x ) . 2 ^x (2 \cdot 2 ^x + 8) \leq 8 ^x (5 - 2 ^x). What is the value of a + b ? a + b?

4 4 6 6 3 3 5 5

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Dan Wilhelm
Feb 28, 2016

We are given the inequality 2 x ( 2 2 x + 8 ) 8 x ( 5 2 x ) 2 ^x (2 \cdot 2 ^x + 8) \leq 8 ^x (5 - 2 ^x) . Substituting y = 2 x y = 2^x , we are asked to find all x x which satisfy W ( y ) 0 W(y) \leq 0 , where:

W ( y ) = y ( 2 y + 8 ) y 3 ( 5 y ) = y ( 2 y + 8 y 2 ( 5 y ) ) = y ( y 3 5 y 2 + 2 y + 8 ) = y ( y + 1 ) ( y 2 ) ( y 4 ) . \begin{aligned} W(y) &= y(2y + 8) - y ^3 (5 - y) \\ &= y(2y + 8 - y^2(5 - y)) \\ &= y(y^3 - 5y^2 + 2y + 8) \\ &= y(y + 1)(y - 2)(y - 4). \end{aligned}

From this factorization, given y = 2 x > 0 y = 2^x > 0 , only four intervals exist where W ( y ) W(y) differs in sign. Testing each yields:

  • y ( , 1 ) W ( y ) 0 y \in (-\infty, -1) \implies W(y) \leq 0
  • y ( 1 , 2 ) W ( y ) 0 y \in (-1, 2) \implies W(y) \geq 0
  • y ( 2 , 4 ) W ( y ) 0 y \in (2, 4) \implies W(y) \leq 0
  • y ( 4 , ) W ( y ) 0 y \in (4, \infty) \implies W(y) \geq 0

As desired, W ( y ) 0 W(y) \leq 0 in two of the four intervals: ( , 1 ) (-\infty, -1) and ( 2 , 4 ) (2, 4) . However, since y = 2 x > 0 y = 2^x > 0 , y y must also be positive. Hence, y ( 2 , 4 ) y \in (2, 4) .

So, the bounds are given by 2 = 2 x 2 = 2^x and 4 = 2 x 4 = 2^x , i.e. x = 1 x = 1 and x = 2 x = 2 . The sum of these bounds is 1 + 2 = 3 1 + 2 = 3 .

ddddd vffff fffff

Nam Đặng Thành - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...