If is a positive real number and is the minimum value of .
Find the value of to 3 significant digits.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
∂ x ∂ x x x x ⇒ x x x x ( x x x − 1 + x x x lo g ( x ) ( x x − 1 + x x lo g ( x ) ( lo g ( x ) + 1 ) ) )
Numerically searching for a root of that expression, that is, searching for a zero value for that expression, near x being 0.25, gives x = 0 . 2 7 4 6 8 9 3 8 5 2 4 4 0 1 7 . Evaluating x x x x at x = 0 . 2 7 4 6 8 9 3 8 5 2 4 4 0 1 7 gives 0.593237297769728.
Evaluating ∂ x ∂ ∂ x ∂ x x x x , x x x x ( x x x − 1 + x x x lo g ( x ) ( x x − 1 + x x lo g ( x ) ( lo g ( x ) + 1 ) ) ) 2 + x x x x ( x x x − 1 ( x x x − 1 + x x lo g ( x ) ( lo g ( x ) + 1 ) ) + x x x − 1 ( x x − 1 + x x lo g ( x ) ( lo g ( x ) + 1 ) ) + x x x lo g ( x ) ( x x − 1 + x x lo g ( x ) ( lo g ( x ) + 1 ) ) 2 + x x x lo g ( x ) ( x x − 1 lo g ( x ) + x x − 1 ( lo g ( x ) + 1 ) + x x − 1 ( x x − 1 + lo g ( x ) ) + x x lo g ( x ) ( lo g ( x ) + 1 ) 2 ) ) , at x = 0 . 2 7 4 6 8 9 3 8 5 2 4 4 0 1 7 gives 3.66815838086362, which is a positive number and therefore the root is a minimum.