Exponential Piecewise equation

Algebra Level 1

8 2 x 3 x = 4 2 x 2 5 x + 3.5 \large 8^{\left|2\lceil{x}\rceil-3\lfloor{x}\rfloor \right|} = 4^{2\lfloor{x}\rfloor^2-5\lceil{x}\rceil+3.5}

If the range of x x for the equation above to hold true is a < x < b a < x < b , find a + b a+b .

Note: \lfloor \cdot \rfloor denotes the floor function . | \cdot | denotes the absolute value function .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Given that:

8 2 x 3 x = 4 2 x 2 5 x + 3.5 2 6 x 9 x = 2 4 x 2 10 x + 7 6 x 9 x = 4 x 2 10 x + 7 \begin{aligned} 8^{\left|2\lceil x \rceil - 3\lfloor x \rfloor \right|} & = 4^{2\lfloor x \rfloor^2 - 5\lceil x \rceil + 3.5} \\ 2^{\left|6\lceil x \rceil - 9\lfloor x \rfloor \right|} & = 2^{4\lfloor x \rfloor^2 - 10\lceil x \rceil + 7} \\ \implies \left|6\lceil x \rceil - 9\lfloor x \rfloor \right| & = 4\lfloor x \rfloor^2 - 10\lceil x \rceil + 7 \end{aligned}

If x x is an integer, then x = x = x \lceil x \rceil = \lfloor x \rfloor = x and 3 x = 4 x 2 10 x + 7 |-3x| = 4x^2 - 10x + 7 or

4 x 2 10 x + 7 = { 3 x if x 0 4 x 2 13 x + 7 = 0 No integer solution. 3 x if x < 0 4 x 2 7 x + 7 = 0 No real solution. 4x^2 - 10x + 7 = \begin{cases} 3x & \text{if }x \ge 0 & \implies 4x^2 - 13x + 7 = 0 & \text{No integer solution.} \\ - 3x & \text{if }x < 0 & \implies 4x^2 - 7x + 7 = 0 & \text{No real solution.} \end{cases}

Therefore, there is no integer solution or x x is not an integer. Then x = x + 1 \lceil x \rceil = \lfloor x \rfloor + 1 and 4 x 2 10 x 3 = 6 3 x 4\lfloor x \rfloor^2 - 10\lfloor x \rfloor - 3 = |6-3\lfloor x \rfloor| or

{ 4 x 2 7 x 9 = 0 if x 2 No integer solution. 4 x 2 13 x + 3 = 0 if x > 2 x = 3 as x 1 4 \begin{cases} 4\lfloor x \rfloor^2 - 7\lfloor x \rfloor - 9 = 0 & \text{if }\lfloor x \rfloor \le 2 & \implies \text{No integer solution.} \\ 4\lfloor x \rfloor^2 - 13\lfloor x \rfloor + 3 = 0 & \text{if }\lfloor x \rfloor > 2 & \implies \lfloor x \rfloor = 3 \text{ as } \lfloor x \rfloor \ne \frac 14 \end{cases}

Therefore, 3 < x < 4 3 < x < 4 and a + b = 3 + 4 = 7 a+b = 3+4 = \boxed 7 .

Yashas Ravi
Nov 2, 2019

If a = x a=\lfloor{x}\rfloor and b = x b=\lceil{x}\rceil , we know that b = a + 1 b=a+1 . Substituting this, we get 3 2 ( a + 1 ) 3 a = 2 ( 2 a 2 5 ( a + 1 ) + 3.5 ) 3|2(a+1)-3a|=2(2a^2-5(a+1)+3.5) . Solving the equation yields 4 4 real solutions for a a , but only integral solutions work so a = 3 a=3 . This means that x = 3 \lfloor{x}\rfloor=3 and x = 4 \lceil{x}\rceil=4 so 3 < x < 4 3<x<4 . As a result, the final answer is 3 + 4 = 7 3+4=7 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...