Exponential product

Calculus Level 4

P = n = 1 [ m = 1 4 ( 2000 2 m ) 1 n 2 ] P=\prod _{ n=1 }^{ \infty }{ \left[ \prod _{ m=1 }^{ 4 }{ { \left( \frac { 2000 }{ { 2 }^{ m } } \right) }^{ \frac { 1 }{ { n }^{ 2 } } } } \right] }

If P P can be expressed in the form A π B { A }^{ { \pi }^{ B } } , where A A and B B are positive integers, find the value of A B \frac { A }{ B } .


This problem is original.

Picture credits: Sundog and Crepuscular Rays in 2340m Altitude by ThaliaTraianou, Wikipedia


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

For a fixed n n , we see that the expression inside is ( 2000 2 ) 1 / n 2 ( 2000 2 2 ) 1 / n 2 ( 2000 2 3 ) 1 / n 2 ( 2000 2 4 ) 1 / n 2 = ( 200 0 4 2 10 ) 1 / n 2 . \left(\frac{2000}{2}\right)^{1/n^2}\left(\frac{2000}{2^2}\right)^{1/n^2}\left(\frac{2000}{2^3}\right)^{1/n^2}\left(\frac{2000}{2^4}\right)^{1/n^2}=\left(\frac{2000^4}{2^{10}}\right)^{1/n^2}. It is not hard to see that 200 0 4 2 10 = 5 0 6 \frac{2000^4}{2^{10}}=50^6 . Therefore, P = n = 1 ( 5 0 6 ) / n 2 = ( 5 0 6 ) 1 / 1 2 + 1 / 2 2 + 1 / 3 2 + = ( 5 0 6 ) π 2 / 6 = 5 0 π 2 . \begin{aligned} P &= \prod_{n=1}^{\infty} (50^6)^{/n^2}\\ &= (50^6)^{1/1^2+1/2^2+1/3^2+\cdots}\\[5pt] &= (50^6)^{\pi^2/6}\\[5pt] &= 50^{\pi^2}. \end{aligned} Note that 1 1 2 + 1 2 2 + 1 3 2 + = π 2 6 \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\cdots=\frac{\pi^2}{6} is a well-known telescopic summation. Then we have A = 50 A=50 and B = 2 , B=2, so A B = 25 \dfrac{A}{B}=25 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...