Exponential Recap III

Algebra Level 2

3 n 9 n 1 2 n = 3 n + 1 9 2 n n \large \sqrt[n]{3^n \cdot 9^{n-\frac{1}{2}}}=3^{n+1} \cdot \sqrt[n]{9^{2n}}

Find the value of n n that makes the equation above true.


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 20, 2016

3 n 9 n 1 2 n = 3 n + 1 9 2 n n ( 3 n 3 2 n 1 ) 1 n = 3 n + 1 ( 3 4 n ) 1 n Raise both sides to the power of n 3 n 3 2 n 1 = 3 n 2 + n 3 4 n 3 3 n 1 = 3 n 2 + 5 n Equating the powers of both sides. 3 n 1 = n 2 + 5 n n 2 + 2 n + 1 = 0 ( n + 1 ) 2 = 0 n = 1 \begin{aligned} \sqrt[n]{3^n9^{n-\frac 12}} & = 3^{n+1}\sqrt[n]{9^{2n}} \\ \left(3^n 3^{2n-1}\right)^\frac 1n & = 3^{n+1} \left(3^{4n}\right)^\frac 1n & \small \color{#3D99F6} \text{Raise both sides to the power of }n \\ 3^n 3^{2n-1} & = 3^{n^2+n} 3^{4n} \\ 3^{\color{#3D99F6}3n-1} & = 3^{\color{#3D99F6}n^2+5n} & \small \color{#3D99F6} \text{Equating the powers of both sides.} \\ \color{#3D99F6}3n-1 & = \color{#3D99F6}n^2+5n \\ n^2 + 2n + 1 & = 0 \\ (n+1)^2 & = 0 \\ \implies n & = \boxed{-1} \end{aligned}

Gian Tuazon
Dec 20, 2016

3 n 9 n 1 2 n = 3 n + 1 9 2 n n \sqrt[n]{3^n\cdot 9^{n-\frac{1}{2}}}=3^{n+1}\cdot \sqrt[n]{9^{2n}}

( 3 n 9 n 1 2 ) 1 n = 3 n + 1 ( 9 2 n ) 1 n \left(3^n\cdot 9^{n-\frac{1}{2}}\right)^{\frac{1}{n}}=3^{n+1}\cdot \left(9^{2n}\right)^{\frac{1}{n}}

( 3 n 3 2 ( n 1 2 ) ) 1 n = 3 n + 1 ( 3 2 ( 2 n ) ) 1 n \left(3^n\cdot 3^{2\left(n-\frac{1}{2}\right)}\right)^{\frac{1}{n}}=3^{n+1}\cdot \left(3^{2\left(2n\right)}\right)^{\frac{1}{n}}

( 3 n 3 2 n 1 ) 1 n = 3 n + 1 ( 3 4 n ) 1 n \left(3^n\cdot 3^{2n-1}\right)^{\frac{1}{n}}=3^{n+1}\cdot \left(3^{4n}\right)^{\frac{1}{n}}

( 3 n + 2 n 1 ) 1 n = 3 n + 1 + ( 1 n 4 n ) \left(3^{n+2n-1}\right)^{\frac{1}{n}}=3^{n+1+\left(\frac{1}{n}\cdot 4n\right)}

3 3 n 1 n = 3 n + 5 3^{\frac{3n-1}{n}}=3^{n+5}

3 1 n = n + 5 3-\frac{1}{n}=n+5

3 n 1 = n 2 + 5 n 3n-1=n^2+5n

n 2 + 5 n ( 3 n 1 ) = 0 n^2+5n-\left(3n-1\right)=0

n 2 + 2 n + 1 = 0 n^2+2n+1=0

( n + 1 ) 2 = 0 \left(n+1\right)^2=0

n = 1 ∴ n=-1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...