Exponential Recap I

Algebra Level 2

( 100 0 3 x 1 0 1 2 1 0 3 7 + x ) 10 0 x + 3 10 0 1 2 + x = 10 0 x + 1 1 0 x \large\dfrac{\left(1000^{3x}\cdot 10^{\frac{1}{2}}\cdot 10^{\frac{3}{7}+x}\right)}{100^{x+3}\cdot 100^{\frac{1}{2}+x}}=\dfrac{100^{x+1}}{10^{-x}}

Without using a calculator, solve for x x .

111 43 \frac{111}{43} 113 42 \frac{113}{42} 112 43 -\frac{112}{43} 114 47 -\frac{114}{47}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Gian Tuazon
Oct 26, 2016

( 100 0 3 x 1 0 1 2 1 0 3 7 + x ) 10 0 x + 3 10 0 1 2 + x = 10 0 x + 1 1 0 x \dfrac{\left(1000^{3x}\cdot 10^{\frac{1}{2}}\cdot 10^{\frac{3}{7}+x}\right)}{100^{x+3}\cdot 100^{\frac{1}{2}+x}}=\dfrac{100^{x+1}}{10^{-x}}

First all the bases equal.

( 1 0 3 ( 3 x ) 1 0 1 2 1 0 3 7 + x ) 1 0 2 ( x + 3 ) 1 0 2 ( 1 2 + x ) = 1 0 2 ( x + 1 ) 1 0 x \dfrac{\left(10^{3\left(3x\right)}\cdot 10^{\frac{1}{2}}\cdot 10^{\frac{3}{7}+x}\right)}{10^{2\left(x+3\right)}\cdot 10^{2\left(\frac{1}{2}+x\right)}}=\dfrac{10^{2\left(x+1\right)}}{10^{-x}}

Once all bases are equal (all are 10) , then solve algebraically, following the rules of exponents, and ignoring the base of 10.

( 9 x + 1 2 + 3 7 + x ) ( 2 x + 6 + 1 + 2 x ) = 2 x + 2 ( x ) \left(9x+\dfrac{1}{2}+\dfrac{3}{7}+x\right)-\left(2x+6+1+2x\right)=2x+2-\left(-x\right)

6 x 85 14 = 3 x + 2 6x-\frac{85}{14}=3x+2

3 x = 113 14 3x=\frac{113}{14}

x = 113 42 x\ =\ \dfrac{113}{42}

Substituting the value of x x into the original equation.

11787686347.935892 11787686347.935854 11787686347.935892 ≠ 11787686347.935854

However, while they are not mathematically equal, they are still similar when rounded to a whole integer.

11787686348 = 117876863478 11787686348 = 117876863478

Actually, the sides are exactly equal, and your algebraic manipulations show that.

The numerical value that you calculated isn't equal, because your calculator device isn't accurate enough / has rounding error.

I've edited the problem accordingly.

Calvin Lin Staff - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...