Exponentials for us

Algebra Level 3

k = 1 k 4 k ! k = 1 k 3 k ! = ? \large\ \frac {\displaystyle \sum _{ k=1 }^{ \infty }{ \frac { { k }^{ 4 } }{ k! } } }{\displaystyle \sum _{ k=1 }^{ \infty }{ \frac { { k }^{ 3 } }{ k! } } } = ?


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 26, 2018

We know that k = 0 k n k ! = B n e \displaystyle \sum_{k=0}^\infty \frac {k^n}{k!} = B_n e , where B n B_n is the n n th Bell number for n n is a non-negative integer. And Bell number can be generated by B n = k = 0 n 1 B k ( n 1 k ) \displaystyle B_n = \sum_{k=0}^{n-1}B_k \binom {n-1}k . We can easily get from B 0 = 1 e k = 0 1 k ! = e e = 1 B_0 = \displaystyle \frac 1e \sum_{k=0}^\infty \frac 1{k!} = \frac ee = 1 . Then we have:

B 1 = B 0 ( 1 1 0 ) = 1 B 2 = B 0 ( 2 1 0 ) + B 1 ( 2 1 1 ) = 1 + 1 = 2 B 3 = B 0 ( 3 1 0 ) + B 1 ( 3 1 1 ) + B 2 ( 3 1 2 ) = 1 + 2 + 2 = 5 B 4 = B 0 ( 4 1 0 ) + B 1 ( 4 1 1 ) + B 2 ( 4 1 2 ) + B 3 ( 4 1 3 ) = 1 + 3 + 6 + 5 = 15 \begin{aligned} B_1 & = B_0 \dbinom {1-1}0 = 1 \\ B_2 & = B_0 \dbinom {2-1}0 + B_1 \dbinom {2-1}1 = 1+1 = 2 \\ B_3 & = B_0 \dbinom {3-1}0 + B_1 \dbinom {3-1}1 + B_2 \dbinom {3-1}2 = 1 + 2 + 2 = 5 \\ B_4 & = B_0 \dbinom {4-1}0 + B_1 \dbinom {4-1}1 + B_2 \dbinom {4-1}2 + B_3 \dbinom {4-1}3 = 1 + 3 + 6 + 5 = 15 \end{aligned}

Therefore, we have k = 1 k 4 k ! k = 1 k 3 k ! = k = 0 k 4 k ! k = 0 k 3 k ! = B 4 e B 3 n = 15 5 = 3 \dfrac {\sum_{k=1}^\infty \frac {k^4}{k!}}{\sum_{k=1}^\infty \frac {k^3}{k!}} = \dfrac {\sum_{k=0}^\infty \frac {k^4}{k!}}{\sum_{k=0}^\infty \frac {k^3}{k!}} = \dfrac {B_4e}{B_3n} = \dfrac {15}5 = \boxed{3} .


Alternative solution

k = 0 1 k ! = e k = 1 k k ! = k = 0 k k ! = k = 0 k + 1 ( k + 1 ) ! = k = 0 1 k ! = e k = 1 k 2 k ! = k = 0 k 2 k ! = k = 0 ( k + 1 ) 2 ( k + 1 ) ! = k = 0 k + 1 k ! = 2 e k = 1 k 3 k ! = k = 0 k 3 k ! = k = 0 ( k + 1 ) 3 ( k + 1 ) ! = k = 0 ( k + 1 ) 2 k ! = k = 0 k 2 + 2 k + 1 k ! = 5 e k = 1 k 4 k ! = k = 0 k 4 k ! = k = 0 ( k + 1 ) 4 ( k + 1 ) ! = k = 0 ( k + 1 ) 3 k ! = k = 0 k 3 + 3 k 2 + 3 k + 1 k ! = 15 e \begin{aligned} \sum_{k=0}^\infty \frac 1{k!} & = e \\ \sum_{k=1}^\infty \frac k{k!} & = \sum_{k=0}^\infty \frac k{k!} = \sum_{k=0}^\infty \frac {k+1}{(k+1)!} = \sum_{k=0}^\infty \frac 1{k!} = e \\ \sum_{k=1}^\infty \frac {k^2}{k!} & = \sum_{k=0}^\infty \frac {k^2}{k!} = \sum_{k=0}^\infty \frac {(k+1)^2}{(k+1)!} = \sum_{k=0}^\infty \frac {k+1}{k!} = 2e \\ \sum_{k=1}^\infty \frac {k^3}{k!} & = \sum_{k=0}^\infty \frac {k^3}{k!} = \sum_{k=0}^\infty \frac {(k+1)^3}{(k+1)!} = \sum_{k=0}^\infty \frac {(k+1)^2}{k!} = \sum_{k=0}^\infty \frac {k^2+2k+1}{k!} = 5e \\ \sum_{k=1}^\infty \frac {k^4}{k!} & = \sum_{k=0}^\infty \frac {k^4}{k!} = \sum_{k=0}^\infty \frac {(k+1)^4}{(k+1)!} = \sum_{k=0}^\infty \frac {(k+1)^3}{k!} = \sum_{k=0}^\infty \frac {k^3+3k^2+3k+1}{k!} = 15e \end{aligned}

Therefore, we have k = 1 k 4 k ! k = 1 k 3 k ! = 15 e 5 e = 3 \dfrac {\sum_{k=1}^\infty \frac {k^4}{k!}}{\sum_{k=1}^\infty \frac {k^3}{k!}} = \dfrac {15e}{5e} = \boxed{3} .


Alternative solution

k = 0 x k k ! = e x x = 1 k = 0 1 k ! = e d d x k = 0 x k k ! = d d x e x k = 0 k x k 1 k ! = e x x = 1 k = 0 k k ! = e k = 0 k x k k ! = x e x d d x k = 0 k x k k ! = d d x x e x k = 0 k 2 x k 1 k ! = e x + x e x x = 1 k = 0 k 2 k ! = 2 e k = 0 k 2 x k k ! = x e x + x 2 e x d d x k = 0 k 2 x k k ! = d d x ( x e x + x 2 e x ) k = 0 k 3 x k 1 k ! = e x + 3 x e x + x 2 e x x = 1 k = 0 k 3 k ! = 5 e k = 0 k 3 x k k ! = x e x + 3 x 2 e x + x 3 e x d d x k = 0 k 3 x k k ! = d d x ( x e x + 3 x 2 e x + x 3 e x ) k = 0 k 4 x k 1 k ! = e x + 7 x e x + 6 x 2 e x + x 3 e x x = 1 k = 0 k 4 k ! = 15 e \begin{aligned} \sum_{k=0}^\infty \frac {x^k}{k!} & = e^x & \small \color{#3D99F6} \implies x=1 \implies \sum_{k=0}^\infty \frac 1{k!} = e \\ \frac d{dx}\sum_{k=0}^\infty \frac {x^k}{k!} & = \frac d{dx} e^x \\ \sum_{k=0}^\infty \frac {kx^{k-1}}{k!} & = e^x & \small \color{#3D99F6} \implies x=1 \implies \sum_{k=0}^\infty \frac k{k!} = e \\ \sum_{k=0}^\infty \frac {kx^k}{k!} & = xe^x \\ \frac d{dx} \sum_{k=0}^\infty \frac {kx^k}{k!} & = \frac d{dx} xe^x \\ \sum_{k=0}^\infty \frac {k^2x^{k-1}}{k!} & = e^x + xe^x & \small \color{#3D99F6} \implies x=1 \implies \sum_{k=0}^\infty \frac {k^2}{k!} = 2e \\ \sum_{k=0}^\infty \frac {k^2x^k}{k!} & = xe^x + x^2e^x \\ \frac d{dx} \sum_{k=0}^\infty \frac {k^2x^k}{k!} & = \frac d{dx} \left(xe^x + x^2e^x\right) \\ \sum_{k=0}^\infty \frac {k^3x^{k-1}}{k!} & = e^x + 3xe^x + x^2e^x & \small \color{#3D99F6} \implies x=1 \implies \sum_{k=0}^\infty \frac {k^3}{k!} = 5e \\ \sum_{k=0}^\infty \frac {k^3x^k}{k!} & = xe^x + 3x^2e^x + x^3e^x \\ \frac d{dx} \sum_{k=0}^\infty \frac {k^3x^k}{k!} & = \frac d{dx} \left(xe^x + 3x^2e^x + x^3e^x\right) \\ \sum_{k=0}^\infty \frac {k^4x^{k-1}}{k!} & = e^x + 7xe^x + 6x^2e^x + x^3e^x & \small \color{#3D99F6} \implies x=1 \implies \sum_{k=0}^\infty \frac {k^4}{k!} = 15e \end{aligned}

Therefore, we have k = 1 k 4 k ! k = 1 k 3 k ! = 15 e 5 e = 3 \dfrac {\sum_{k=1}^\infty \frac {k^4}{k!}}{\sum_{k=1}^\infty \frac {k^3}{k!}} = \dfrac {15e}{5e} = \boxed{3} .

I think you have recently found the relation between Bells number and e as I see in one of my comment section. :)

Naren Bhandari - 3 years, 3 months ago

Log in to reply

I was looking for the relation. Then someone posted a problem and I found it.

Chew-Seong Cheong - 3 years, 3 months ago

@Chew-Seong Cheong , sir can use expansion of e^x to evaluate this?

Priyanshu Mishra - 3 years, 3 months ago

Log in to reply

You can differentiate e x e^x to get k = 1 k k ! \sum_{k=1}^\infty \frac k{k!} . Multiply with x x and then differentiate again to get k = 1 k 2 k ! \sum_{k=1}^\infty \frac {k^2}{k!} and so on.

Chew-Seong Cheong - 3 years, 3 months ago

Log in to reply

@Chew-Seong Cheong , thanks sir.

Priyanshu Mishra - 3 years, 3 months ago

I added another alternative solution.

Chew-Seong Cheong - 3 years, 3 months ago
Naren Bhandari
Feb 26, 2018

S 1 = n = 1 n 4 n ! = n 3 ( n 1 ) ! = ( n 3 1 ) ( n 1 ) ! + 1 ( n 1 ) ! = n = 1 n 2 ( n 2 ) ! + n ( n 2 ) ! + 2 ( n 1 ) ! = n = 1 ( n + 2 ) ( n 2 ) ( n 2 ) ! + 4 ( n 1 ) ! + 1 ( n 2 ) ! + 3 ( n 1 ) ! = n = 1 ( n 3 ) ( n 3 ) ! + 3 ( n 1 ) ! + 8 ( n 1 ) ! = n = 1 4 ( n 3 ) ! + 11 ( n 1 ) ! = 15 e \begin{aligned} & S_1 =\displaystyle\sum_{n=1}^{\infty} \frac{n^4}{n!} = \frac{n^3}{(n-1)!} =\frac{(n^3-1)}{(n-1)!} + \frac{1}{(n-1)!} \\& \quad =\displaystyle\sum_{n=1}^{\infty} \frac{n^2}{(n-2)! } + \frac{n}{(n-2)!} + \frac{2}{(n-1)!} \\&\quad =\displaystyle\sum_{n=1}^{\infty} \frac{(n+2)(n-2)}{(n-2)!} +\frac{4}{(n-1)!} + \frac{1}{(n-2)!}+ \frac{3}{(n-1)!} \\& \quad =\displaystyle\sum_{n=1}^{\infty} \frac{(n-3)}{(n-3)! } + \frac{3}{(n-1)!}+ \frac{8}{(n-1)!}\\& \quad =\displaystyle\sum_{n=1}^{\infty} \frac{4}{(n-3)!} + \frac{11}{(n-1)!} = 15e \end{aligned} S 2 = n = 1 n 3 n ! = n = 1 n 2 1 + 1 ( n 1 ) ! = n = 1 n + 1 ( n 2 ) ! + 1 ( n 1 ) ! = n = 1 1 ( n 3 ) ! + 3 ( n 2 ) ! + 1 ( n 1 ) ! = 5 e \begin{aligned} S_2 = & \displaystyle\sum_{n=1}^{\infty}\frac {n^3}{n!} = \displaystyle\sum_{n=1}^{\infty}\frac {n^2-1+1}{(n-1)!} =\displaystyle\sum_{n=1}^{\infty} \frac {n+1}{(n-2)!} + \frac {1}{(n-1)!} \\& =\displaystyle\sum_{n=1}^{\infty}\frac{1}{(n-3)!} + \frac {3}{(n-2)!} + \frac {1}{(n-1)!}= 5e\end{aligned}

Thus S 1 S 2 = 15 e 5 e = 3 \frac{S_1}{S_2} = \frac{15e}{5e} = 3 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...