This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1 3 1 3 = ( 1 2 + 1 ) 1 3 = n = 0 ∑ 1 3 ( n 1 3 ) 1 2 1 3 − n ( 1 n ) = 1 + n = 0 ∑ 1 2 ( n 1 3 ) 1 2 1 3 − n ( 1 n ) Hence 1 3 1 3 − 1 will have 12 as a factor, so 1 3 1 3 ≡ 1 ( m o d 1 2 )
Direct result of FERMAT THEOREM
Problem Loading...
Note Loading...
Set Loading...
1 3 ≡ 1 ( m o d 1 2 ) ⇒ 1 3 1 3 ≡ 1 ( m o d 1 2 ) And 1 ≡ 1 ( m o d 1 2 ) Therefore we have: 1 3 1 3 − 1 ≡ 1 − 1 ( m o d 1 2 ) ⇒ 1 3 1 3 − 1 ( m o d 1 2 ) = 0