Exponents 101

Algebra Level 2

90 a = 2 9 0 b = 5 4 5 ( 1 a b ) ( 2 2 a ) = ? \begin{aligned} {90}^a &=& 2 \\ 90^b &=& 5 \\ \large 45^{ \frac{(1-a-b)}{(2-2a)} } &=& \ ? \end{aligned}


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Pi Han Goh
May 7, 2015

Challenge Master:

1 a b 2 2 a = 1 2 ( 1 a 1 a b 1 a ) = 1 2 ( 1 b 1 a ) \frac{1-a-b}{2-2a} = \frac12 \left (\frac{1-a}{1-a} - \frac{b}{1-a} \right) = \frac12 \left(1 - \frac{b}{1-a} \right) .

b = log 90 5 , a = log 90 2 b = \log_{90}5, a = \log_{90} 2

1 b 1 a = 1 log 90 5 1 log 90 2 = 1 log 90 5 log 90 90 log 90 2 \Rightarrow 1 - \frac{b}{1-a} = 1 - \frac{ \log_{90}{5} } {1- \log_{90}{2} } = 1 - \frac{ \log_{90}{5} } {\log_{90} 90- \log_{90}{2} }

= 1 log 90 5 log 90 45 = 1 log 45 5 = log 45 45 log 45 5 = log 45 9 = 2 log 45 3 = 1 - \frac{ \log_{90}{5} } {\log_{90} 45 } = 1 - \log_{45} 5= \log_{45} 45 - \log_{45} 5 = \log_{45}9 = 2 \log_{45} 3

So, 45 45 power that fraction equals to 4 5 1 2 2 log 45 3 = 4 5 log 45 3 = 3 45^{\frac 12 \cdot 2 \log_{45} 3 } = 45^{\log_{45} 3} = \boxed3 .

@Pi Han Goh , we really liked your comment, and have converted it into a solution. If you subscribe to this solution, you will receive notifications about future comments.

Brilliant Mathematics Staff - 6 years, 1 month ago
Ikkyu San
May 3, 2015

From equation 9 0 a = 2 a = log 90 2 90^a=2\Rightarrow \color{#D61F06}{a=\log_{90}{2}}

From equation 9 0 b = 5 b = log 90 5 90^b=5\Rightarrow \color{#3D99F6}{b=\log_{90}{5}}

Thus,

4 5 1 a b 2 2 a = 4 5 1 log 90 2 log 90 5 2 2 log 90 2 = 4 5 log 90 90 log 90 2 log 90 5 log 90 9 0 2 log 90 2 2 = 4 5 log 90 90 2 5 log 90 8100 4 = 4 5 log 90 9 log 90 2025 = 4 5 2 log 90 3 2 log 90 45 = 4 5 log 90 3 log 90 45 = 4 5 log 3 log 90 log 45 log 90 = 4 5 log 3 log 45 = 4 5 log 45 3 = 3 \begin{aligned}45^{\dfrac{1-\color{#D61F06}a-\color{#3D99F6}b}{2-2\color{#D61F06}a}}=&\ 45^{\dfrac{1-\color{#D61F06}{\log_{90}{2}}-\color{#3D99F6}{\log_{90}{5}}}{2-2\color{#D61F06}{\log_{90}{2}}}}\\=&\ 45^{\dfrac{\log_{90}{\color{#20A900}{90}}-\log_{90}{\color{#20A900}2}-\log_{90}{\color{#20A900}5}}{\log_{90}{\color{magenta}{90^2}}-\log_{90}{\color{magenta}{2^2}}}}\\=&\ 45^{\dfrac{\log_{90}{\color{#20A900}{\dfrac{\dfrac{90}{2}}{5}}}}{\log_{90}{\color{magenta}{\dfrac{8100}{4}}}}}\\=&\ 45^{\dfrac{\log_{90}{\color{#20A900}9}}{\log_{90}{\color{magenta}{2025}}}}\\=&\ 45^{\dfrac{\color{#624F41}2\log_{90}{3}}{\color{#624F41}2\log_{90}{45}}}\\=&\ 45^{\dfrac{\color{#69047E}{\log_{90}{3}}}{\color{#302B94}{\log_{90}{45}}}}\\=&\ 45^{\dfrac{\color{#69047E}{\dfrac{\log{3}}{\log{90}}}}{\color{#302B94}{\dfrac{\log{45}}{\log{90}}}}}\\=&\ 45^{\dfrac{\log{\color{#69047E}{3}}}{\log{\color{#302B94}{45}}}}\\=&\ 45^{\log_{\color{#302B94}{45}}{\color{#69047E}3}}=\boxed{3}\end{aligned}

Moderator note:

Another fantastic solution! There's not many solutions with colours in it, certainly a good read. Great job!

Despite writing a beautiful standard approach to this problem, can you think of a simpler approach? Hint: break up the fraction 1 a b 2 2 a \frac{1-a-b}{2-2a} into two parts.

Chew-Seong Cheong
Aug 20, 2015

4 5 1 a b 2 2 a = ( 90 2 ) 1 a b 2 ( 1 a ) = ( 90 9 0 a ) 1 a b 2 ( 1 a ) = 9 0 ( 1 a ) ( 1 a b ) 2 ( 1 a ) = 9 0 1 a b 2 = ( 90 9 0 a 9 0 b ) 1 2 = ( 90 2 × 5 ) 1 2 = 9 = 3 \begin{aligned} 45^{\frac{1-a-b}{2-2a}} & = \left( \frac{90}{2} \right)^{\frac{1-a-b}{2(1-a)}} = \left( \frac{90}{90^a} \right)^{\frac{1-a-b}{2(1-a)}} = 90^{\frac{(1-a)(1-a-b)}{2(1-a)}} = 90^{\frac{1-a-b}{2}} \\ & = \left( \frac{90}{90^a90^b} \right)^{\frac{1}{2}} = \left( \frac{90}{2\times 5} \right)^{\frac{1}{2}} = \sqrt{9} = \boxed{3} \end{aligned}

Mohamed Wafik
Aug 20, 2015

9 0 1 a = 90 2 = 45 90^{1-a} = \frac{90}{2} = 45

4 5 1 1 a = 90 45^{\frac{1}{1-a}} = 90

4 5 1 a b 1 a = 9 0 1 a b = 9 0 1 9 0 a + b 45^{\frac{1-a-b}{1-a}} = 90^{1-a-b} = \frac {90^{1}}{90^{a+b}}

= 90 9 0 a × 9 0 b = 90 2 × 5 = 90 10 = 9 = \frac {90}{90^{a} \times 90^{b}} = \frac{90}{2 \times 5} = \frac{90}{10} = 9

4 5 1 a b 2 2 a = 9 = 3 45^{\frac{1-a-b}{2-2a}} = \sqrt{9} = \boxed{3}

Nabil Azmi
May 22, 2015

a= log2/log90..........

b=log5/log90...........

a+b= log10/log90............

1-(a+b)=1-log10/log90= log9/log90............

1-a= 1-log2/log90 =log45/log90.............

(1-a-b)/2(1-a)= log9/log90 *log90/2log45=log9/2log45..........

let (1-a-b)/2(1-a)log45=log x..............

(log9)/2=logx...........

log9 =2log x^2...........

x^2=9 ............

X=3

Purushottam Gupta
May 22, 2015

whats wrong in here ? can somebody correct this looking for a well explaination !!

You don't necessarily need to use 10 10 as the base of log \log .

Pi Han Goh - 6 years ago

Log in to reply

whats wrong , if i do ? their are no rstrictions on base !!

Purushottam Gupta - 6 years ago

Log in to reply

You're purposely setting 1 a b 1-a-b equals to 0 0 , see through your steps again. It's a fallacy to choose a base such that you will force out an unwanted value, try an unknown base instead, like what Ikkyu San did.

Pi Han Goh - 6 years ago

a doubt in your solution: if b/a=log(5)/log(2) how can it be: b/1-a=log(5)/1-log(2)

Bharat Naik - 6 years ago

Log in to reply

umm , guess ratio property ! ??

Purushottam Gupta - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...